
The 3rd Universal Cup

Stage 6: Osijek
August 10-11, 2024

This problem set should contain 12 problems on 19 numbered pages.

Based on

Osijek Competitive Programming Camp

1

The 3rd Universal Cup
Stage 6: Osijek, August 10-11, 2024

Problem A. Coprime Array
Input file: standard input

Output file: standard output

Time limit: 1 second
Memory limit: 256 megabytes

Given two integers s and x, find any shortest array such that the sum of its elements is s, and all elements
are coprime to x.

Two integers are coprime if the only positive integer that divides both of them is 1.

Input
The only line contains the integers s and x (2 ≤ s, x ≤ 109).

Output
If there is no array that satisfies the condition, print a single integer −1.

Otherwise, the first line should contain one integer n (1 ≤ n ≤ 106) — the length of the array. The next
line should contain n space-separated integers — the array itself. The elements of the array should not
exceed 109 in absolute value.

If there are multiple possible answers, print any. We have a proof that if a solution exists, then there
exists a solution satisfying the constraints above.

Examples
standard input standard output

9 6 3

-7 -7 23

14 34 2

83 -69

Page 2 of 19

The 3rd Universal Cup
Stage 6: Osijek, August 10-11, 2024

Problem B. Square Locator
Input file: standard input

Output file: standard output

Time limit: 1 second
Memory limit: 256 megabytes

There is a square ABCD whose vertices have integer coordinates, with A on the positive y-axis.

You are given the squared distances AO2, BO2, CO2, DO2, where O(0, 0) is the origin. Find the vertices
of the square.

Input
The only line of each test contains four integers AO2, BO2, CO2, DO2

(1 ≤ AO2, BO2, CO2, DO2 ≤ 1018) — the squares of the distances of the vertices of the square
to the origin.

Output
Output one line containing seven space-separated integers Ay, Bx, By, Cx, Cy, Dx, Dy, representing the
coordinates of the vertices of the square A(0, Ay), B(Bx, By), C(Cx, Cy), D(Dx, Dy).

The input is given in such a way that such integers exist. If there are multiple possible answers, print any
of them.

Example
standard input standard output

36 5 10 41 6 -1 2 3 1 4 5

Note
The first test case is pictured below.

Page 3 of 19

The 3rd Universal Cup
Stage 6: Osijek, August 10-11, 2024

Problem C. -is-this-bitset-
Input file: standard input

Output file: standard output

Time limit: 5 seconds
Memory limit: 256 megabytes

Note the low memory limit!

You are given a binary tree with n nodes in it, rooted at node 1. This means that each node has at most
2 children. You are also given two arrays of n integers, a and b

The subset problem for node i is defined to be the question: Can you take a subset S of the ancestors of
node i and itself, such that

∑
j∈S(aj) = bi

You can do at most 5000 operations on array a. In one operation you choose two integers i and x (1 ≤ i ≤ n,
0 ≤ x ≤ 2 · 106), and set ai := x.

After these operations, solve the subset sum problem for each node i, and output the results as a bitstring.

Input
The first line contains the integer n (1 ≤ n ≤ 300 000) — the size of the binary tree The next n− 1 lines
contain two integers u and v (1 ≤ u, v ≤ n, u ̸= v) — nodes u and v are connected by an edge.

It is guaranteed that these edges form a binary tree rooted at node 1

The next line contains n integers a1, a2, . . . , an (0 ≤ ai ≤ 2 · 106) — the array a.

The last line of the input contains n integers b1, b2, . . . , bn (0 ≤ bi ≤ 2 · 106) — the array b

Output
Output n integers a′1, a

′
2, . . . , a

′
n (0 ≤ a′i ≤ 2 · 106) — the new array a′, which is the array a after the

operations were done on it.

On the next line, output a bitstring of length n, with a 1 on position i, if the subset problem on node i
can be solved, and 0 otherwise.

Examples
standard input standard output

5

2 1

1 3

3 4

5 4

1 3 11 12 6

0 5 12 13 18

1 3 11 12 0

10110

1

2000000

2000000

2000000

1

Note
In the sample output, it was decided to change the last number of array a into 0.

Page 4 of 19

The 3rd Universal Cup
Stage 6: Osijek, August 10-11, 2024

Problem D. Cycle Game
Input file: standard input

Output file: standard output

Time limit: 3 seconds
Memory limit: 256 megabytes

There’s a board with n×m white squares. Jeroen plays a single-player game on this grid. Each turn he
colors one square black. Two squares are adjacent if they share an edge. The squares, together with these
adjacency relations form a planar graph. The game ends when a simple cycle of black squares is formed
that has a non-empty interior. By drawing the edges of the graph with straight lines, between the centres
of the squares we get a drawing of the planar graph. A square that does not lie on the cycle, is in the
interior of the cycle, if it lies in the interior of the polygon that the edges of the cycle form, when drawn
as straight line segments. Jeroen wants to produce a pretty picture on the playing board when he’s done
so he already thought of the moves he is going to play. If a move happens to end the game, he doesn’t
play it. In the input there are k distinct positions (ri, ci), the moves that Jeroen has planned out.

Your job is to figure out for each move, if it would end the game or not, and print a bitstring with 1 if
the i-th move ends up being played, and 0 if this move would end the game, and does not get played.

Input
The first line of the input contains three integers n,m,k (1 ≤ n ·m ≤ 300 000, 1 ≤ k ≤ n ·m) The next k
lines each consist of two integers ri, ci (1 ≤ ri ≤ n, 1 ≤ ci ≤ m), which are the row and column of the
i-th move that Jeroen is planning to play.

Output
Output a single line with a string of length k with a 1 on the i-th position if the i-th move will be played,
and 0 if this move would end up losing, so it will not be played.

Examples
standard input standard output

4 3 7

2 1

2 2

2 3

3 1

3 2

4 1

4 2

1111111

3 3 8

1 1

1 2

1 3

2 3

3 3

3 2

3 1

2 1

11111110

Page 5 of 19

The 3rd Universal Cup
Stage 6: Osijek, August 10-11, 2024

Problem E. Sum of Squares
Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 256 megabytes

You’re given a polynomial A(x) = a0 + · · ·+ anx
n with integer coefficients and an integer m.

Consider a multivariate polynomial D(x1, . . . , xm), defined as

D(x1, . . . , xm) =
m∏
i=1

A(xi)
i−1∏
j=1

(xi − xj).

Let s be the sum of squares of all coefficients of D(x1, . . . , xm). Find s modulo 109 + 7.

Input
The only line of input contains two integers n (0 ≤ n ≤ 500) and m (0 ≤ m ≤ 109).

The second line contains n+ 1 integers a0, . . . , an (0 ≤ ai < 109 + 7).

It is guaranteed that an ̸= 0 and a0 ̸= 0.

Output
Print a single integer, the value of s modulo 109 + 7.

Examples
standard input standard output

2 0

1 2 3

1

2 1

1 2 3

14

2 2

1 2 3

264

Note
For A(x) = 1 + 2x+ 3x2 and m = 2, we have

D(x1, x2) = −9x31x
2
2 − 6x31x2 − 3x31 + 9x21x

3
2 − x21x2 − 2x21 + 6x1x

3
2 + x1x

2
2 − x1 + 3x32 + 2x22 + x2.

Note that also D = 1 for m = 0 and D(x1) = 1 + 2x1 + 3x21 for m = 1.

Page 6 of 19

The 3rd Universal Cup
Stage 6: Osijek, August 10-11, 2024

Problem F. Alternating Cycle
Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 256 megabytes

You are given n points in the plane, with no 3 points collinear. You can choose some non-empty subset
of the points, and choose an order for this subset. If the points in your chosen ordered subset are
p0, p1, . . . , pk−1, we want for 1 ≤ i ≤ k + 1, that the angles ∠pi−1pipi+1 are alternating clockwise and
counterclockwise in increasing order of i. In the labeling of the points in the angle, you should take the
indices mod k. Note that k must be even, otherwise due to parity it is impossible. Such an ordered
subset of points is called an alternating cycle.

You have to find the alternating cycle with the smallest number of points in it, and print it to the output,
or report no such cycle exists.

Input
The first line of input contains a single integer, n (1 ≤ n ≤ 200 000) — the number of points in the input.

Each of the next n lines contains the description of a point. Each line contains two integers x and y,
(0 ≤ x, y ≤ 109) — the coordinates of the point.

It is guaranteed that the points are distinct, and it is also guaranteed no 3 points are collinear.

Output
Output −1 if there is no alternating cycle. Otherwise, output k, the number of points in the cycle. On
the following lines output the points on the cycle in order.

On each of the following k lines, print two integers x and y, (0 ≤ x, y ≤ 109) — the coordinates of a point
in the alternating cycle.

The points should be a subset of the input points, and they should form an alternating cycle in the order
of the input.

If there are multiple solutions which achieve the minimum k, any of these solutions is accepted.

Examples
standard input standard output

6

10 15

20 15

15 23

0 31

15 0

30 30

6

0 31

10 15

15 0

20 15

30 30

15 23

4

0 0

0 1

1 0

1 1

-1

Note

Page 7 of 19

The 3rd Universal Cup
Stage 6: Osijek, August 10-11, 2024

Illustration of sample 1, with a possible alternating cycle of length 6 drawn with straight line segments.

Page 8 of 19

The 3rd Universal Cup
Stage 6: Osijek, August 10-11, 2024

Problem G. Touching Grass
Input file: standard input

Output file: standard output

Time limit: 3 seconds
Memory limit: 32 megabytes

Note the unusual memory limit.

Adamant is a famous person for writing educational blog posts on math and programming. One day, he
finally decides that he has written too many blogs and it’s time to go outside and touch some grass.

Adamant has a lawn on which n grass plants grow. The grasses are indexed from 1 to n. We can draw
the lawn and grasses on the 2D plane: the ground is the line y = 0, and grasses grow up vertically. Each
grass can be described by two numbers x and y, meaning it can be considered as a vertical line segment
from (x, 0) to (x, y).

To touch grass, Adamant will move his hand m times. Each time he moves his hand from the coordinates
(x1, y1) to the coordinates (x2, y2) along a straight path. We say that his hand touches the i-th grass, if
the segment (x1, y1)− (x2, y2) touches the segment (or its endpoints) defined by the i-th grass.

Your task is to determine, for each time Adamant moves his hand, whether he will touch any grass. If the
answer is yes, you also need to find the index of any grass he will touch.

Input
The first line contains an integer n (1 ≤ n ≤ 8× 105).

The i-th of the next n lines contains two integers x, y (1 ≤ x, y ≤ 109) describing the grass with index i.
It is guaranteed that no two grasses have the same x.

The next line contains an integer m (1 ≤ m ≤ 3× 105).

Each of the next m lines contains four integers x1, y1, x2, y2 (1 ≤ x1, y1, x2, y2 ≤ 109) describing a hand
movement. It is guaranteed that both x1 and x2 are different from the x-coordinate of any grass.

Output
For each hand movement, print one line: the index of any grass that is touched. If there are multiple
answers, print any one of them. If no grass is touched, print −1.

Example
standard input standard output

3

2 3

6 4

4 5

3

1 4 7 6

7 4 1 2

1 6 1 6

3

1

-1

Note
Visualization of the sample:

Page 9 of 19

The 3rd Universal Cup
Stage 6: Osijek, August 10-11, 2024

Page 10 of 19

The 3rd Universal Cup
Stage 6: Osijek, August 10-11, 2024

Problem H. Game Design
Input file: standard input

Output file: standard output

Time limit: 1 second
Memory limit: 256 megabytes

You are a game designer working on a new video game, Outstandingly Captivating Platforming Challenge.
The game consists of n levels indexed 1 . . . n, which the player must complete in that order. In addition to
the normal progression, the levels are also connected through n one-way warp portals. A different team in
your company has already completed the design of each level. They have placed one warp portal entrance
and one warp portal exit in every level. Your task is to connect each entry portal to an exit portal on a
different level such that each exit portal is also connected to only one entry portal.

However, there is an additional restriction: the player must not be able to skip ahead in the game. That
is, the player must not be able to enter a portal, exit at a portal on a later level, and keep playing on that
later level. In order to make this possible, the level designers have placed some exit portals in isolated
locations from which the rest of the level is not accessible. That is: if an entry portal on level u leads to
an exit portal on some level v > u, then the exit portal on level v must be in an isolated location.

You have already written a program to examine all allowed ways to connect each entry portal to an exit
portal, in order to measure the predicted audience engagement. That program has been running for a
while now, your boss is getting angry, and you want to know how long this program will take. Thus,
calculate the number of allowed ways to connect each entry portal to an exit portal. Print the answer
modulo 998 244 353.

Input
The first line contains one integer t (1 ≤ t ≤ 1000) — the number of test cases. t test cases follow.

Each test case consists of a binary string s of length n (2 ≤ n ≤ 5000). The i-th character of s is 1 if the
exit portal on level i is at an isolated location, and 0 otherwise.

It is guaranteed that the sum of n over all test cases doesn’t exceed 5000.

Output
For each test case, print the answer modulo 998 244 353 on a separate line.

Example
standard input standard output

4

0101

1010010010001010

11111

10100100011000010010101001001001

3

0

44

393298077

Note
In the first example test, the valid configurations are [2, 1, 4, 3], [2, 4, 1, 3] and [4, 1, 2, 3], where the i-th
position in the array is the location of the exit portal connected to the entry portal on the i-th level.

In the second example test, there is no entry portal that can be connected to the exit portal on the last
level.

Page 11 of 19

The 3rd Universal Cup
Stage 6: Osijek, August 10-11, 2024

Problem I. Geometry Hacking
Input file: standard input

Output file: standard output

Time limit: 1 second
Memory limit: 256 megabytes

Jeroen made a new algorithm for checking if a point is inside a polygon:

Given a simple polygon p0,p1 . . .pn−1 and a query point q, his algorithm does the following:

• Initialize ans := 0

• Draw a ray from q in the positive x-direction.

• For all 0 ≤ i < n: Check if the closed segment pip(i+1) mod n intersects the ray, if so, increment ans.

• For all 0 ≤ i < n if pi lies on the ray, add 1 to ans.

• If ans is odd, the algorithm says inside, otherwise outside.

He is convinced his algorithm is correct, but you have to convince him otherwise. To humiliate him, you
are looking for polygons where the point (0, 0) is strictly inside the polygon (so not on the boundary),
but his algorithm will say that the point is outside. Consider all simple polygons with vertices on integer
coordinates for which this is true, and sort this infinite list by area, breaking ties arbitrarily. Given an
integer k ≤ 103 in the input, output the k first polygons in this list. If multiple possible answers exist,
you can print any of them.

Note that two polygons a and b are considered the same polygon if the point list of a is a cyclic rotation
of the points of b. Two polygons are also considered the same, if the reversed point list of a is a cyclic
rotation of b. So in these cases, only one of a and b is included in the infinite list. Note that although
placing an extra integer point on one of the edges of a polygon produces the same shape, this will be
counted as a different polygon.

Input
The only line of input contains the integer k (1 ≤ k ≤ 1000) — the number of polygons you should
output.

Output
For the first k polygons for which Jeroen’s algorithm fails, in sorted order of area, output a description:

On the first line of the description, output n, the number of vertices of the polygon.

On each of the next n lines, output 2 integers, x and y (|x|, |y| ≤ 109), the coordinates of the vertices of
the polygon.

Under the constraints of the problem, it can be proven that if the smallest areas of the first k valid
polygons are A1 ≤ A2 ≤ · · · ≤ Ak, then ensuring the additional constraint that the coordinates do not
exceed 109 in absolute value, does not change this list of areas.

Note that polygons in the output have to be simple polygons.

Page 12 of 19

The 3rd Universal Cup
Stage 6: Osijek, August 10-11, 2024

Example
standard input standard output

2 4

-1 0

0 1

1 0

0 -1

3

0 -4

3 5

-3 5

Note
The output for the sample input is actually wrong. It is only to show the output format.
These two polygons both have the point (0, 0) inside, but Jeroen’s algorithm does not fail,
and their areas are not guaranteed to be the smallest possible 2 areas.

Page 13 of 19

The 3rd Universal Cup
Stage 6: Osijek, August 10-11, 2024

Problem J. Non-Interactive Nim
Input file: standard input

Output file: standard output

Time limit: 1 second
Memory limit: 256 megabytes

Nim is a classical strategy game played by two players. There are n piles of stones, the i-th of which
contains ai stones. Players alternate in taking turns. On each turn, the player must pick a pile with a
positive number of stones and remove a positive number of stones from it. The player who can’t make a
move loses.

The Blue Monster wanted to add an interactive Nim problem to the Ordinary & Common Problem
Collection. In this problem, your program would have to play Nim against an opponent who always plays
optimally. However, the Blue Monster is too lazy to learn how to create interactive problems. Therefore,
you are asked to only make moves where the opponent has only one optimal move.

You are given a1, a2, . . . , an — an instance of Nim. It is guaranteed that if both players play optimally,
then the first player loses. You will play as the first player, your opponent will play as the second player.
Your opponent will always make optimal moves. You have to play in such a way that after each of your
moves, there is only one move that your opponent can make such that you will lose if both players play
optimally after that point.

Print a sequence of such moves or declare that this is impossible. Notice that since your opponent always
makes optimal moves, you know exactly what moves your opponent will make. You do not have to minimize
the length of the sequence.

Input
The first line contains one integer t (1 ≤ t ≤ 5 · 104) — the number of test cases. t test cases follow. Each
test case is described as follows.

The first line of the test case contains one integer n (2 ≤ n ≤ 105). The second line contains n integers
a1, a2, . . . , an (1 ≤ ai ≤ 1018). It is guaranteed that if both players play optimally, the first player will
lose.

It is guaranteed that the sum of n over all test cases doesn’t exceed 105.

Output
For each test case, print the answer as follows.

If playing the game in a way that the opponent always has only one optimal move is impossible, print −1.
Otherwise, print an integer k (1 ≤ k ≤ 100) on the first line — the number of moves. On each of the
next k lines, print two integers p (1 ≤ p ≤ n) and x, signifying that you will remove x stones from the
p-th pile.

It can be shown that under the constraints of this problem, if it is possible to play in a way that the
opponent always has only one optimal move, then it is possible to do that and lose the game within 100
moves.

Example
standard input standard output

2

4

4 2 7 1

4

1 1 1 1

4

3 2

1 2

3 3

4 1

-1

Page 14 of 19

The 3rd Universal Cup
Stage 6: Osijek, August 10-11, 2024

Note
In the first example test, the opponent is forced to make moves (2, 2), (3, 2), (1, 1) and (1, 1). The game
will play out as follows:

After your move After opponent’s move
4, 2, 5, 1

4, 0, 5, 1

2, 0, 5, 1

2, 0, 3, 1

2, 0, 0, 1

1, 0, 0, 1

1, 0, 0, 0

0, 0, 0, 0

In the second example test, no matter what move you make, there will be three nonempty piles left, each
with one stone. Clearly, all choices your opponent has are equivalent.

Page 15 of 19

The 3rd Universal Cup
Stage 6: Osijek, August 10-11, 2024

Problem K. String and Nails
Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 256 megabytes

You are given n nails mounted on a wooden board at integer coordinates. You have a piece of string that
encloses all the nails and is pulled tight to form the smallest loop that encloses the points. You have to
remove the nails one at a time, following this rule:

First, you pull the string tight around the remaining nails. Then, you may choose any nail that the string
is pulled taut around (so the string touches this nail and makes an angle of < 180 degrees) and remove
it. You try to repeat this process until only one point remains.

Check if you can repeatedly remove nails until only one nail is left, and if so, give such a sequence of
removals.

Input
The first line of input contains a single integer, n (1 ≤ n ≤ 200 000) — the number of points in the input.

Each of the next n lines contains the description of a nail. Each line contains two integers x and y,
(0 ≤ x, y ≤ 109) — the coordinates of the nail on the wooden board.

It is guaranteed that no two nails occupy the exact same position on the wooden board.

Output
Output “YES” if it is possible to remove all but one nail according to the rules; otherwise, print “NO”. If
the answer is “YES”, on the following lines output the removals.

On each of the following n − 1 lines, print two integers x and y, (0 ≤ x, y ≤ 109) — the coordinates of
the nail that you currently want to remove.

If there are multiple solutions, any solution is accepted.

Examples
standard input standard output

3

1 1

2 4

3 1

YES

1 1

2 4

1

1000000000 0

YES

Page 16 of 19

The 3rd Universal Cup
Stage 6: Osijek, August 10-11, 2024

Problem L. All-You-Can-Eat
Input file: standard input

Output file: standard output

Time limit: 1 second
Memory limit: 256 megabytes

This is an interactive problem.

In an all-you-can-eat conveyor belt restaurant, meals are placed on a moving conveyor belt. The customers
sit next to the conveyor belt as meals slide by. You can take any meal as it slides by you, and you can repeat
that any number of times. It’s a pretty good deal, but it’s also easy to overeat and feel sick afterwards.

Specifically, after you sit down, meals 1, 2, . . . , n will slide by. After seeing meal i, you judge its caloric
value to be ai.

In one particular such restaurant, there are two types of seats:

• Facing the direction opposite of the direction of the conveyor belt. In that case, you can see all items
that will reach you in the future, and thus can plan your choices accordingly (assume there are no
other customers in the restaurant).

• Facing the direction of movement of the conveyor belt. In that case, you can only see one item at
a time: when meal i next to you, you must decide whether you want it or not, with no knowledge
of what the caloric values of the meals that come after it are. Once meal i + 1 slides by, meal i is
already too far to reach.

Therefore, it is harder to optimize your lunch when facing the direction of the conveyor belt. You did,
however, come up with an unethical hack: you can get rid of a meal you have picked by discreetly sliding
it on the table of another customer.

In order to prevent overeating, you have set the following rules for yourself.

• You will face the direction of movement of the conveyor belt.

• Once you start eating, you won’t be able to take any new meals from the conveyor belt.

• At any time, the total caloric value of meals on your table must not exceed 1000.

Now you have the opposite problem — you worry that if you follow all the rules, you will leave the
restaurant hungry. You decided that you’ll be happy as long as the total caloric value of meals you eat is
at least 60% of what you’d be able to get if you were to face the opposite direction but still followed the
other rules.

More formally, let x be the maximum possible sum of a subsequence of a1, a2, . . . , an that doesn’t exceed
1000. You’ll be happy if the total caloric value of meals you eat is at least 0.6x.

Implement a strategy that ensures you’ll always be happy. The interactor is adaptive, meaning that
the sequence of caloric values is not necessarily decided in advance: it may depend on the choices your
program makes.

Input
The first line contains a single integer t (1 ≤ t ≤ 104) — the number of test cases.

Interaction Protocol
The interaction between your program and the jury’s program begins with reading a single integer n
(1 ≤ n ≤ 104) — the number of meals that will slide by.

The following will then happen n times:

Page 17 of 19

The 3rd Universal Cup
Stage 6: Osijek, August 10-11, 2024

• Read a single integer ai (0 ≤ ai ≤ 1000) from the input — the caloric value of the i-th meal.

• Print a line of the form k t1 t2 · · · tk, (0 ≤ k ≤ i, 1 ≤ tj ≤ i) indicating that you want to discard
the meals with indices t1, t2, . . . , tk. All of the items must be on your table at that time.

• Print a line containing either the word “TAKE” (if you want to add meal i on your table) or “IGNORE”
(if you want to leave it on the conveyor belt). In either case, the word must be printed without
quotes.

After the n-th iteration, the sum of caloric values on your table must be at most 0.6x, where x is defined
above.

It is guaranteed that the sum of n over all test cases is at most 104.

If your program makes an invalid query at any time (i.e. you print a line that doesn’t conform to the
input specification, you have more than 1000 total value on the table at a time, you try to discard an item
that is not on the table, or a test case ends without you being happy), the interactor will immediately
terminate. If your program keeps reading input after that, it may receive an arbitrary verdict, as it will
keep reading from a closed stream. To prevent this, always check if the input stream is still open, i.e.
instead of writing

int ai;

cin >> ai;

write

int ai;

if (!(cin >> ai))

exit(0);

to instantly terminate your program if the interactor terminates. This way, you will receive Wrong Answer
if you make an invalid query.

After printing a query do not forget to output end of line and flush the output. To do this, use:

• fflush(stdout) or cout.flush() in C++;

• stdout.flush() in Python.

Example
standard input standard output

1

5

10

13

450

585

465

0

TAKE

0

TAKE

0

TAKE

2 1 3

TAKE

0

IGNORE

Page 18 of 19

The 3rd Universal Cup
Stage 6: Osijek, August 10-11, 2024

Note
The example section shows one possible interaction between your program and the judge. After the third
item, you have items 1, 2, 3 on your table, with caloric values 10, 13 and 450 respectively. When the fourth
item arrives, if you want to take it, you have to discard some items, as 10+13+450+585 = 1058 > 1000.
In this example, your program has decided to discard items 1 and 3, so you have exactly 598 afterwards.
You also ignore the final item.

At the end of the process, you have total caloric value 598 on the table. If you had faced the opposite
direction, you could have had as much as 10+ 13+ 450+ 465 = 938. As 598

938 ≈ 0.637 > 0.6, this is a valid
solution.

Page 19 of 19

