
Algorithmic Engagements contest

Presentation of solutions



A. Interesting Paths
Fastest solution: UTokyo: Time Manipulators (0:12)



A. Interesting Paths

Problem statement
Given is a DAG with n vertices and m edges.
What is the longest possible sequence of paths in which each path:

starts in the source (vertex 1) and finishes in the sink (vertex n)
contains at least one edge not contained in any of the previous paths



A. Interesting Paths

Solution
If you can’t get to the sink from the source, the answer is 0.

Let N be the number of vertices reachable both from the source and the sink (in
the later case in the reversed graph).
Let M be the number of such edges.
The answer is M − N + 2.
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Let N be the number of vertices reachable both from the source and the sink (in
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The answer is M − N + 2.



A. Interesting Paths

Why?
If there is an unvisited edge, we can extend the sequence of paths.

If the new path visits v unvisited vertices, it musts visit at least v + 1 unvisited
edges (at it is enough).
So N − 2 =

∑
p v and M =

∑
p(v + 1) = p +

∑
p v , thus p = M − N + 2.

Complexity

O(n +m)
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B. Roars III
Fastest solution: none :(



B. Roars III

Problem statement
Given is a tree which in some of its vertices contain tokens. For each of its vertices
independently we should assume that it is a root and solve the following problem:

In one move we can choose a vertex (different that the root) which contains a token
and move this token one edge towards the root. We can do it only if the target vertex
doesn’t contain a token. We have to calculate the maximum possible number of moves.
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B. Roars III

One root
Let’s consider the vertices from the deepest ones.

If the vertex doesn’t contain a token, but there is at least one token somewhere in
its subtree, it’s optimal to move all the tokens on the path to the deepest one one
vertex towards the root.

Proof
Exchange argument.

New move
We can treat such sequence of moves as moving the deepest token directly to the root
of the subtree.
We can find the deepest token in the subtree in time O(log(n)) using segment tree.
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B. Roars III

Many roots
Let’s simulate the mentioned process for any root.

Note that the operations are reversible (we can choose a token brought to the root
and move it back to its position) – we can rollback the operations.
Note that the vertex we are calculating the answer for doesn’t have to be the root
for our data structures – we can ”reroot” the tree in complexity O(log(n))
(because the new root is going to be closer to a directed subtree and further from
the rest of the vertices).
What if we calculated the answer for some vertex v and we want to calculate it for
its neighbor u? – Only two moves can be different!
Let’s rollback these two moves (firstly rollback bringing the token to v and then to
u) and then bring tokens to v and to u from correct subtrees.
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B. Roars III

Complexity
If we maintain a segment tree over the tree we can perform each operation in time
O(log(n)) which gives the final complexity O(n log(n)).



C. Radars
Fastest solution: UTokyo: Time Manipulators (0:07)



C. Radars

Problem statement
Given is a square board n× n. For each of its cells we know the cost of building a radar
in it which will cover a square with side n centered in this cell. What is the minimal
cost to cover the whole board?



C. Radars

First easy observation
We need to cover each corner of the board.

Second easy observation
If we covered all corners, we surely covered the whole board.

Conclusion
We can focus only on covering the corners.
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C. Radars

Algorithm

We maintain the cost to cover each mask of the corners

– DP[16] will be helpful.
To consider a cell with a mask of corners m and cost x , we need to relax the dynamic
programming – for each i we execute DP[i |m] = min(DP[i |m],DP[i ] + x).

Complexity

Linear in the size of the board – O(n2).
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We maintain the cost to cover each mask of the corners – DP[16] will be helpful.
To consider a cell with a mask of corners m and cost x , we need to relax the dynamic
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D. Xor Partitions
Fastest solution: Harbour.Space: P+P+P (0:08)



D. Xor Partitions

Problem statement
Given is a sequence of integers a1, a2, . . . , an.

The value of an interval of the sequence is the xor of its elements.
The value of a partition of the sequence into intervals is the product of the values of
each interval.
Calculate the sum of the values of all the partitions of a.



D. Xor Partitions

Problem statement
Given is a sequence of integers a1, a2, . . . , an.
The value of an interval of the sequence is the xor of its elements.

The value of a partition of the sequence into intervals is the product of the values of
each interval.
Calculate the sum of the values of all the partitions of a.



D. Xor Partitions

Problem statement
Given is a sequence of integers a1, a2, . . . , an.
The value of an interval of the sequence is the xor of its elements.
The value of a partition of the sequence into intervals is the product of the values of
each interval.

Calculate the sum of the values of all the partitions of a.



D. Xor Partitions

Problem statement
Given is a sequence of integers a1, a2, . . . , an.
The value of an interval of the sequence is the xor of its elements.
The value of a partition of the sequence into intervals is the product of the values of
each interval.
Calculate the sum of the values of all the partitions of a.



D. Xor Partitions

Slow solution
dp[i ] - sum of the values of all partitions of a1, a2, . . . , ai

Iterate over the length of the last interval in the partition.
The sum of the values of such partitons – the value of the last segment multiplied
by sum of the values of all partitions of the prefix.

dp[i ] =
i−1∑
j=0

dp[j ] · XOR(aj+1, aj+2, . . . , ai )

Complexity O(n2) – too slow.
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D. Xor Partitions

Better idea
We can use distributive property of multiplication over addition.

Consider each bit in the last interval separately.

dp[i ] =
∑
b

i−1∑
j=0

dp[j ] · 2b · [b is set in XOR(aj+1, aj+2, . . . , ai )]

Set prefi = XOR(a1, a2, . . . , ai )

dp[i ] =
∑
b

i−1∑
j=0

dp[j ] · 2b · [state of b is different in prefi and in prefj ]
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D. Xor Partitions

Algorithm

We can calculate DP2[i ][b][2] – the sum of DP[j ] with j ≤ i such that the bit b is set
or not in prefi . It’s easy to update it and calculate DP with it.

Memory optimization
We can only remember the last layer of DP2.

Complexity

O(n · log(max(ai )))



D. Xor Partitions

Algorithm

We can calculate DP2[i ][b][2] – the sum of DP[j ] with j ≤ i such that the bit b is set
or not in prefi . It’s easy to update it and calculate DP with it.

Memory optimization
We can only remember the last layer of DP2.

Complexity

O(n · log(max(ai )))



D. Xor Partitions

Algorithm

We can calculate DP2[i ][b][2] – the sum of DP[j ] with j ≤ i such that the bit b is set
or not in prefi . It’s easy to update it and calculate DP with it.

Memory optimization
We can only remember the last layer of DP2.

Complexity
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E. Pattern Search II
Fastest solution: UTokyo: Time Manipulators (1:21)



E. Pattern Search II

Problem statement
Given is a string t over binary alphabet. We have to choose an equal to it subsequence
of the infinite Fibonacci word, so that the distance between the first and the last chosen
position is minimal.



E. Pattern Search II

Infinite word
Each 3 consecutive characters in Fibonacci word contain both letters, so the result
won’t exceed 3n.

If we fit in Sk , then we are either in its left part (Sk−1) or in its right part (Sk−2) or in
both of them.
We can rewrite the left part as Sk−2Sk−3 and the right part as Sk−4Sk−5Sk−4. If
|Sk−4| ≥ 3n, then surely Sk−3 is enough in the left part and Sk−4 is enough in the right
part, so we fit Sk−2.
We fit in Sk and |Sk−4| ≥ 3n → we fit in Sk−1.

Infinite word
We don’t have to look for the optimal subseqnece too far.
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Infinite word
We don’t have to look for the optimal subseqnece too far.



E. Pattern Search II

Slow solution
Iterate over the position in S at which the subsequence should start.

While going to the
right we can greedily match characters from t and find the earliest possible last position.

Speed up
We need to be able to answer the following queries: if we’d want to match to Sk the
characters of t starting from the i-th one, how many of them would we match?
This will help us quickly jump over the fragments of S .
Answers for all such queries can be easily calculated – if we denote the answer for the
above question by DP[i ][k], then
DP[i ][k] = DP[i ][k − 1] + DP[i + DP[i ][k − 1]][k − 2] holds.
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Answers for all such queries can be easily calculated – if we denote the answer for the
above question by DP[i ][k], then
DP[i ][k] = DP[i ][k − 1] + DP[i + DP[i ][k − 1]][k − 2] holds.
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Fast solution
We can calculate each cell of the mentioned array in constant time, so we can calculate
all of them in time O(n · log(n)).

Using it we can for each possible starting positon find the earliest possible last position
in time O(log(n)).

Complexity

Dynamic programming and looking for all the subsequences take time O(n · log(n))
each.
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F. Waterfall Matrix
Fastest solution: Add Train Team (1:41)



F. Waterfall Matrix

Problem statement
We want to create a matrix n × n in which the values in all columns and rows are
nonincreasing. For some subset of its cell we are told what should be in them. For each
of these cells the penalty is the absolute difference between the required value and the
value in our matrix. We have to minimize the sum of penalties.



F. Waterfall Matrix

Preparation
We can move given cells without changing the answer, so that all of them are in
different rows and columns.



F. Waterfall Matrix

What is a difference?

For any integer x we can imagine a ”barrier” on the number line at position x + 1
2 .

|a− b| is the number of barriers between a and b.

One barrier
We could find an optimal matrix if only one barrier would count – the one on position
x + 1

2 . We can change numbers ≤ x into zeroes and > x into ones.
We are looking for a ”border” which goes from the top-right corner to the bottom-left
corner of the matrix – for each of the cells we know at which side of the borter it wants
to be – we pay an unit penalty for each cell that is at the wrong side.
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F. Waterfall Matrix

Sweepline
We sweep the matrix from top to bottom adding rows one by one.

For each edge between columns we want to remember the penalty if the border
goes there – these values are nondecreasing. If they aren’t and some edge has lower
penalty that an edge on its left, we decrease the penalty for the edge on the left.
When passing by an important cell we should either increase a suffix by 1 or
increase a prefix by 1. In the later case we might have to decrease some interval by
1 to keep the penalties nondecreasing.
We can use multiset and store the places in which the result increases.

Border recovery
We can reverse this process and recover the optimal border – this will tell us which cells
should be ≤ x and which should be > x .
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Key observation
Optimal border for x will be below and to the right of the optimal border of x + 1

– we
can find them independently and sum the results!
It would give us correct algorithm working in time O(n2 log(n)).
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Divide and conquer!
For any x we can check which cells should be greater than x and which shouldn’t.

We can run the algorithm for the ”middle” value of x and split recursively on two sides
passing each cell only to one side.
There will be O(log(n)) layers of the recurrence and each of them will contain n cells at
total – it will take O(n log(n)) to consider them all.

Complexity

If we use a data structure (such as multiset) which works in O(log(n)) per operation we
will end up with complexity O(n log2(n)).
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G. Puzzle II
Fastest solution: Add Train Team (2:04)



G. Puzzle II

Problem statement
Given two binary sequences of length n and a number k . In one move we can choose a
cyclic segment of length k from the first sequence and a cyclic segment of the same
length from the second sequence and swap them. We need to make both sequences
monochromatic in at most n moves.



G. Puzzle II

What to do?
What organized moves can we do?
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What to do?
In two moves we can move an element from the first sequence to the second and one
from the second to the first.

As we can choose which sequence will be white we can do
at most n

2 such operations, resulting in ≤ n moves.
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Should we start?
An experienced eye should spot a solution which uses some BST and would result in a
O(n · log(n)) complexity. . .

However it might be a good idea to look for something
simpler and faster.
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O(n · log(n)) complexity. . . However it might be a good idea to look for something
simpler and faster.
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Clever way
Let’s set a sliding window of size k + 1 on first elements of the first sequence.

Let’s set a sliding window of size k on the last elements of the second sequence.
We’ll store both windows on deques – described operation can be done in constant time.
We can move the windows to the right and to the left by one also in constant time.
As long as we are not happy with the first element of the first window we can slide it to
the right – and the second window to the left.
We’ll move both windows at most O(n) times.
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We’ll store both windows on deques – described operation can be done in constant time.
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Complexity

O(n · log(n)) with a BST of your choice or O(n) with some tricks.



H. Weather Forecast
Fastest solution: LNU: LNU Stallions (0:17)



H. Weather Forecast

Problem statement
We are given a sequence of integers and a number k . We need to find a partition of
this sequence into k intervals which maximizes the minimum mean over all intervals.



H. Weather Forecast

Key observation
If we can have all means ≥ x , we surely can have all means ≥ y if x ≥ y .

Conclusion
Binary search to find the answer.
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H. Weather Forecast

Can we have all means ≥ x?

a1+...+a`
` ≥ x ⇐⇒ a1 + . . .+ a` ≥ x · `⇐⇒ (a1 − x) + . . .+ (a` − x) ≥ 0

Subtract x from each number in the sequence.
Calculate prefix sums and set sequence 0 = e0, e1, e2, e3, . . . , ek = n to be the ends
of the intervals in the partition.
Prefix sums in these points must form a nondecreasing sequence. We have to
choose at least k + 1 of them (including 0 and n).

Solution
Longest increasing sequence.

Complexity

O(n · log(n) · log(precision))
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I. Mercenaries
Fastest solution: UTokyo: Time Manipulators (4:10)



I. Mercenaries

Problem statement
We are given a straight road on which we can move only to the right. On the road
there are n cities and the mercenary living in the i-th city is parametrized by pair
(si ,mi ). Between each two neighboring cities there is a shop which allows to buy one
item in it and each item will add some values to both statistics of the mercenary. When
mercenary moves from one city to another (he can move only to the right) he can buy
one item in each shop and their bonuses will accumulate. We have to consider monster
attack scenarios – a monster can attack some city and this monster is parametrized by
three values – A, B and C . A mercenary can defeat the monster if he can get to it
having statistics (S ,M) so that A · S + B ·M ≥ C . We have to find the rightmost
mercenary which could defeat each monster.



I. Mercenaries

Is this geometry?
Let’s interpret mercenaries and items as vectors in the first quarter of a coordinate
plane

– defeating the monster means being in a given halfplane.

Is this convex hulls?
To check if a monster can be defeated we need to consider only upper-right convex hull
of the statistics of the mercenaries that can get to this monster.



I. Mercenaries

Is this geometry?
Let’s interpret mercenaries and items as vectors in the first quarter of a coordinate
plane – defeating the monster means being in a given halfplane.

Is this convex hulls?
To check if a monster can be defeated we need to consider only upper-right convex hull
of the statistics of the mercenaries that can get to this monster.



I. Mercenaries

Is this geometry?
Let’s interpret mercenaries and items as vectors in the first quarter of a coordinate
plane – defeating the monster means being in a given halfplane.

Is this convex hulls?
To check if a monster can be defeated we need to consider only upper-right convex hull
of the statistics of the mercenaries that can get to this monster.



I. Mercenaries

Organized approach
Let’s build a segment tree on the sequence of cities.

In each base segment let’s calculate a convex hull of possible bonuses that we can get if
we pass through this segment.
A convex hull for a segment is a Minkowski sum of convex hulls for its two subsegments
– we can merge them in linear time.
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I. Mercenaries

Organized approach part two
For each base segment let’s also calculate a convex hull of possible statistics of
mercenaries which start in this interval in the moment they leave it.

Such a mercenary can start in the right subsegment or in the left one and strengthen
himself with items from the right interval (again Minkowski sum).
Convex hull of a set of points also can be calculated in linear time.
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I. Mercenaries

Attack scenario
When a monster attacks let’s split the prefix into base segments and consider them
from right to left.

To check if in the segment there is a mercenary that can defeat it we can use binary
search (or ternary search) on the hull.
If yes, we go deeper in the tree.
If no, we have to consider the items that the mercery can buy. Their maximum possible
impact on the monster (information how much should we decrease the C parameter)
also can be found with binary search.
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I. Mercenaries

Optimization

Described approach for O(log(n)) base segments does a binary search

– we can be
better.
Let’s consider the monsters sorted by the angle of their halfplane – the optimal point
on all convex hulls will move only to one direction – we’ll be able to just remove
non-optimal vectors from the convex hulls if we store them as lists.

Complexity
Mentioned optimization will allow us to multiply the size of the input by only one
logarithm – the height of the segment tree and the need of sorting the monsters and
items by angle. We’ll end up with comlexity O((n +

∑
i ri + q) · log(n +

∑
i ri )).
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J. Polygon II
Fastest solution: Harbour.Space: P+P+P (3:24)



J. Polygon II

Problem statement
Random variables X1,X2, . . . ,Xn, where Xi = U(0, 2ai ). Find the probability that we
can construct a nondegenerate polygon with sides of lengths Xi .



J. Polygon II

Triangle inequality
Bad if and only if for some i

Xi ≥
∑
j 6=i

Xj .

Answer

1−
∑
i

P(Xi ≥
∑
j 6=i

Xj)

– bad events are disjoint.
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J. Polygon II

Main idea
Let Yi be a random variable with only two possible values:

P(Yi = 0) =
1
2
,P(Yi = 2i ) =

1
2

Bits decomposition

Xi = U(0, 1) + Y0 + Y1 + . . .+ Yai−1
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J. Polygon II

Dynamic programming

DP[i ][j ] – probability, that we carry j bits (of value 2i ) after deciding on all U(0, 1), Y0,
Y1, . . .Yi−1.

Transitions
ki – number of variables of type Yi

DP[i + 1][j ] =
ki∑
l=0

(DP[i ][2j − l ] + DP[i ][2j − l + 1])

(ki
l

)
2ki

Initialization – only U(0, 1)∑j
i=0 DP[0][i ] = volume of an n-dimentional polyhedron

∑
xi < j and 0 ≤ xi ≤ 1.

Inclusion-exclusion principle on how many xi ≤ 1 are not met.
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J. Polygon II

Complexity

O(max(ai ) · n2)

or O(max(ai ) · n · log(n)) with FFT.
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K. Power Divisions
Fastest solution: Add Train Team (1:18)



K. Power Divisions

Problem statement
Given is a sequence b1, b2, . . . bn of form 2a1 , 2a2 , . . . , 2an .
An interval [l , r ] is good ⇐⇒ bl + bl+1 + . . .+ br = 2k (for k ∈ N)
Calculate the number of partitions of the sequence into good intervals (modulo prime
number).



K. Power Divisions

Workflow

Find all good intervals – divide&conquer.
Count all good partitions – dynamic programming.
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K. Power Divisions

Representation of sum S and increasing it by bi

S 101110
bi 000100

S + bi 110010

Time – amortized O(1) (potential – number of set bits).
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K. Power Divisions

Constants

P – big prime number, for example 261 − 1.
c0, c1, . . . , c106+20 – random coefficients.

Hash

S =
∑

i bi · 2i
h(S) =

∑
i bi · ci modulo P .

Together with the binary reprezentation we will keep track of the hash of the sum (still
amortized constant time).

Probability of a collision

S1 6= S2 ⇒ P(h(S1) = h(S2)) =
1
P
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K. Power Divisions

All good intervals – divide&conquer

split the interval into L and R

recursion on L

recursion on R

intervals sufL + prefR = 2k
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K. Power Divisions

Intervals sufL + prefR = 2k

WLOG prefR ≥ sufL (case prefR < sufL is analogical).

Key observation
For prefR there is only one possible value of sufL.

prefR 0101110
2k 1000000
sufL 0010010

Calculating h(sufL)

a – rightmost set bit in prefR .
b – leftmost set bit in prefR .

h(sufL) + h(prefR) = ca +
∑b

i=a ci .



K. Power Divisions

Intervals sufL + prefR = 2k

WLOG prefR ≥ sufL (case prefR < sufL is analogical).

Key observation
For prefR there is only one possible value of sufL.

prefR 0101110
2k 1000000
sufL 0010010

Calculating h(sufL)

a – rightmost set bit in prefR .
b – leftmost set bit in prefR .

h(sufL) + h(prefR) = ca +
∑b

i=a ci .



K. Power Divisions

Intervals sufL + prefR = 2k

WLOG prefR ≥ sufL (case prefR < sufL is analogical).

Key observation
For prefR there is only one possible value of sufL.

prefR 0101110
2k 1000000
sufL 0010010

Calculating h(sufL)

a – rightmost set bit in prefR .
b – leftmost set bit in prefR .

h(sufL) + h(prefR) = ca +
∑b

i=a ci .



K. Power Divisions

Intervals sufL + prefR = 2k

WLOG prefR ≥ sufL (case prefR < sufL is analogical).

Key observation
For prefR there is only one possible value of sufL.

prefR 0101110
2k 1000000
sufL 0010010

Calculating h(sufL)

a – rightmost set bit in prefR .
b – leftmost set bit in prefR .

h(sufL) + h(prefR) = ca +
∑b

i=a ci .



K. Power Divisions

Intervals sufL + prefR = 2k

WLOG prefR ≥ sufL (case prefR < sufL is analogical).

Key observation
For prefR there is only one possible value of sufL.

prefR 0101110
2k 1000000
sufL 0010010

Calculating h(sufL)

a – rightmost set bit in prefR .
b – leftmost set bit in prefR .

h(sufL) + h(prefR) = ca +
∑b

i=a ci .



K. Power Divisions

Intervals sufL + prefR = 2k

WLOG prefR ≥ sufL (case prefR < sufL is analogical).

Key observation
For prefR there is only one possible value of sufL.

prefR 0101110
2k 1000000
sufL 0010010

Calculating h(sufL)

a – rightmost set bit in prefR .
b – leftmost set bit in prefR .

h(sufL) + h(prefR) = ca +
∑b

i=a ci .



K. Power Divisions

Intervals sufL + prefR = 2k – algorithm

Memorize h(sufL) – (hash)map from h(sufL) into L.

Iterate over prefR , keep frack of S , h(S), a and b.
Check if good sufL exists.

Probability of a collision∑
sufL

∑
prefR

P(h(sufL) = h(2k − prefR)) ≤ n2

P
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K. Power Divisions

Complexity

One level of divide and conquer:

O(n) (hashmap) or O(n log n) (map).
Whole divide and conquer: O(n log n) (hashmap) or O(n log2 n) (map).
Dynamic programming: O(number of good intervals) = O(n log n).
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Complexity
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L. Chords
Fastest solution: Harbour.Space: P+P+P (2:36)



L. Chords

Problem statement
2n points on a circle were randomly paired creating n chords. We need to find the
biggest subset of chords such that no two of them intersect.



L. Chords

Simpler look
We can cut the circle in any position

– now any two chosen interval has to be either
disjoint or one must be contained in the other.

Deterministic solution
DP[`][r ] – maximum number of nonintersecting chords if we choose only from interval
[`, r ].
To calculate DP[`][r ] we surely have to consider DP[`][r − 1].
If in point r some chord ends, its begining is on the point leftr and leftr ≥ ` holds, we
need to consider DP[`][leftr − 1] + 1+ dp[leftr + 1][r − 1].
Described dynamic programming calculates correct answer in time O(n2) and returns it
in DP[1][2n].
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L. Chords

Why randomness?
Chords very often intersect each other in a chaotic way

– it’s difficult to pick a big
subset so that no two of them will intersect – the answer will be small!
It’s best to check empirically – for n = 105 the answer won’t be very far from 800.
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L. Chords

How to use it?
For fixed r and any ` DP[`][r ] won’t be very big.

We also know, that
DP[`− 1][r ] ≥ DP[`][r ].
For each r we can only memorize for which `s the answer increases!
Compressing the square array this way we decrease the size of stored information to
O(n · ans) In time O(ans) we can also calculate everything for fixed r .

Complexity

We end up with time and memory complexity O(n · ans).
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M. Balance of Permutation
Fastest solution: Harbour.Space: P+P+P (1:31)



M. Balance of Permutation

Problem statement
A balance of a permutation p is defined as the sum of |pi − i |. We have to find k-th
lexicographically smallest n-element permutation with balance equal to b.



M. Balance of Permutation

Simple look
A permutation is as assignment of values to positions – let’s imagine n red numbers
(the positions) and n blue numbers (the values) and sort them as numbers.

1 1 2 2 3 3 4 4 5 5

Dynamic programming

Each pair will be created from the perspective of the right number. Let DP[i ][j ] be the
number of ways to create j pairs on the prefix of size i (in the above sequence).
Moving from prefix i to i + 1 we can match the number with one of the previous
unpaired numbers – we know the number of ways to do so. We can also not match it
and assume that we want to match it with something on its right.
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M. Balance of Permutation

What about the balance?
Such dynamic programming will simply count all the permutations

– we can extend the
state.
Let DP[i ][j ][`] be the number of ways to create j pairs on the prefix of size i , so that
the sum of numbers that are right in their pairs is equal to `.
Knowing the sum of right numbers, we also know the sum of left numbers, so we know
the balance.
Such dynamic programming has O(n4) states and we calculate each of them in
constant time.
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M. Balance of Permutation

What about k-th lexicographically smallest one?
In subsequent positions we will try to manually insert subsequent values and count in
how many ways we can finish the permutation so it has the required balance.

How to calculate 5-element permutations that start with [4, 1] and have desired
balance?

1 1 2 2 3 3 4 4 5 5

↓

(1, 4) (1, 2)

2 3 3 4 5 5
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M. Balance of Permutation

Complexity

On each position we will try to insert each value at most once

– O(n2) times we will
run an O(n4) algorithm.
The final complexity will be O(n6).
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