
Southeastern European Regional Programming Contest 2023
December 9, 2023

A. AND-OR closure
Author: Pavle Martinović

Solved by: 5/28
First to solve: KNU_0_GB_RAM

We can generate the AND-OR closure B by setting B to be A initially taking any every two elements x,
y of B and add x AND y and x OR y to B if they aren’t there already. This process will terminate since
we can’t ever get a number greater than 240. However, this simulation may be slow, so we need a better
description of what’s going on.

First let’s forget about all bits such that every value of A has the same value for this bit (either 0 or 1)
because it will remain the same after applying an arbitrary number of OR s and AND s. Now we can
create equivalence classes between the bits, where two bits are equivalent if they’re equal in every element
of A (but not always equal). They will remain the same after applying an arbitrary number of OR s and
AND s, so we can just view them as one bit, i.e let’s choose one bit from every equivalence class and forget

all the other ones. Now we create a DAG on these bits that are still active, where there is an edge i→ j if
and only if in every element of A in which i is set to 1 then so is j. We claim that the number of elements
is B is equal to the number of sets C in this DAG with the property i ∈ C and i → j =⇒ j ∈ C. For
some bit i by taking the AND of all the elements of A where the set i is set to 1, we get a number whose
1 bits are precisely those j for which i → j. By taking the OR of some of these we can get any set C
described above (taking the those i’s which are maximal in the sense that there is no j → i in C). On
the other hand, taking OR s and AND s for these numbers corresponding to some C’s is equivalent to
taking the union or intersection of two sets with the above property, and it’s easily verified that they’ll
still have the above property.

Now we are in interested in finding the number of sets C with the above property, which is equivalent
to finding the number of anti-chains in our DAG (poset), by taking the maximal elements. This can be
done by meet-in-the-middle, for the first K

2 bits we will generate all antichains among them and find
which ones of the other K

2 are still “free“. Then we apply sum over subsets DP to find for each subset
of the other K

2 how many antichains of the first half they can be paired with. Finally, generate the
antichains of the second half, and merge via the calculated SOS DP. Thus, we have solved the problem
in O(n log2(maxAi) +

√
maxAi log(maxAi)).

1

Southeastern European Regional Programming Contest 2023
December 9, 2023

B. Build Permutation
Author: Pavle Martinović

Solved by: 113/121
First to solve: HunTR

First we shall sort the array a (with maintaining the mapping to the original indices by, for example,
sorting pairs of type (value, index)). Now if we solve it for this sorted array, we can easily reconstruct the
respective permutation for the original array.

Notice that if s = a[i] + a[πi], then s − a[i] = a[πi] is sorted decreasingly, so the only valid choice of
permutation π for a sorted a, would have to be π = (n, n − 1, . . . , 1). So we just check whether the sum
a[i] + a[n+1− i] is constant and if it is, we have found the solution, and if not, then there is no solution.

2

Southeastern European Regional Programming Contest 2023
December 9, 2023

C. Christmas Sky

Author: Lucian Bicsi
Solved by: 5/11

First to solve: [UoNovi Sad] Infinity

Let’s imagine binary searching for the answer d. Let’s try to achieve the answer d, by analyzing the
constraints that the problem impose on the translation vector t.

By simply looking at two different points p and q, where p is from the first set and q is from the second,
we can notice that we need to satisfy ||p+ t− q|| ≤ d, where || · || denotes euclidean norm. Geometrically,
the feasible set looks like a disk with center q−p and radius d. Iterating through all of the nm constraints,
we find that d is feasible if and only if all nm disks of radius d have a non-empty intersection.

However, an equivalent condition is that the point t is at distance at most d from all nm points of form
q − p. Otherwise speaking, there is a circle of radius d that encloses all nm points.

Of course, at this point it should become apparent that the minimum such d is the radius of the minimum
enclosing circle of the set of points q − p, which can be computed in expected linear time by Welzl’s
randomized algorithm.

The total complexity is expected O(nm). It can be improved to O(n log n+m logm) by first reducing the
point sets to their convex hull and then computing their Minkowski sum in linear time, but this was not
required for solving the problem.

3

Southeastern European Regional Programming Contest 2023
December 9, 2023

D. Distinct Game
Author: Roman Bilyi

Denis Banu
Solved by: 0/9

First to solve: N/A

Taking another look at the problem, the first player wins when they obtain two equal values.

First, assume that there are no consecutive equal values.

If the last values of both arrays are equal, the first player will take one of them, and the second player
should take the other. As long as the last values are equal, we can continue removing them.

Now, if the last values are not equal, let’s denote them as x and y. Let’s consider another occurrence of
x. If it’s at an odd position (0-based indexing) in either of the arrays, the first player can take it now and
ensure they take another occurrence of x. The same applies to y. So, let’s examine the scenario where
both x and y appear at even positions. Suppose the first player takes x. If the second player takes y,
the first player can then force the second player to take another occurrence of y. Thus, the second player
should take from the same array as the first player.

Now, the last values are not equal, denote them x and y. Let’s look at another occurrence of x. If it’s on
an odd position(0-based indexing) in any of the arrays, the first player can take it now and then ensure
taking another occurrence of x. Same for y. So let’s look at the case when both x and y appear on even
positions. Suppose the first player took x, if the second player take y, the first player can now force the
second player to take another occurrence of y. So the second player should take from the same array as
the first player.

Let’s examine any other game state in the middle of the game before the first player’s turn. In cases other
than the two described previously, it’s possible that another occurrence of x or y has already been taken
by a player. If the first player took it, they could win. If the second player took it, the second player
cannot take another one and should also make a move to the same array as the first player.

Let’s look at any other game state in the middle of the game before the turn of the first player. Rather
than the two cases described before, it’s possible that another occurrence of x or y was already taken by a
player. If it was taken by the first player, they could win. If it was taken by the second player, the second
player can’t take another one and should also make a move to the same array as the first player.

So, we have now determined the strategy for the second player:

• Take from the different array as the first player if the last elements are equal.

• Take from the same array if the last values are different.

With the second player’s strategy now fixed, we can consider the game as a one-player game, always in a
state before the first player’s turn.

Let’s assume both arrays have even lengths after removing equal pairs of the last elements. Since another
occurrence of the value x (the last element of the first array) is at an even position, the first player can
take from the first array while it’s not empty, and the last elements will not be equal at any moment of
the game. Therefore, the first player can force the second player to take all elements at even positions.
On the other hand, the second player can always take all elements at even positions, so the second player
would win only if all elements at even positions are distinct. Let’s refer to the two arrays as even-distinct
if all elements at even positions are distinct.

What if both arrays have odd lengths? It could be shown that the second player wins only if the following
conditions are met:

4

Southeastern European Regional Programming Contest 2023
December 9, 2023

• The arrays have reversed odd-length suffixes:

a1, a2, . . . , a2k, 1, 2, . . . , 2x+ 1

b1, b2, . . . , b2m, 2x+ 1, 2x, . . . , 1

• The prefixes a and b are even-distinct.

The proof is omitted, as it’s much easier from the contestant’s point of view to find by brute force.

So, the solution can be divided into three phases:

1. Remove all equal last elements.

2. If both arrays have odd lengths, find odd-length reversed suffixes.

3. Check if the remaining arrays are even-distinct.

For a better understanding of the following solution, let’s say that if phase 2 is skipped and phase 1 is
non-empty, the last pair of equal elements in phase 1 is phase 2.

Let’s return to the problem when consecutive equal elements are possible. Let’s call a game simplified if
all such pairs are recursively removed. Such removed pairs can create blocks like [1, 2, 3, 3, 2, 4, 4, 1].

If the first player takes the first element of the block, the second player should also take from that block.
Otherwise, the first player could get more than half of the elements in the block, which means some
elements would be equal.

On the other hand, if the second player takes the first element of the block, the first player is not forced to
take elements from that block. Therefore, the first player can decide to remove any number of consecutive
equal values. If the first player wins the simplified game, they will also win the normal one.

Now, we can find the strategy for the second player as well:

• If the first player takes any element of the block, the second player should take from the same array.

• Otherwise, follow the strategy of a simplified game, even if they should take from a block instead
of an element from a simplified game.

Let’s examine the impact of the pairs on the result. Any pair in phase 3 of the game doesn’t change
anything, as the arrays will still be even-distinct.

The second player can still win if and only if:

• All pairs are in phase 2 of the game.

• The pairs are only after an odd number of elements in the reversed part.

• All blocks contain only a single pair.

Otherwise, the first player can force the second player to take both elements of the same pair.

Now, let’s look at some examples. Phase 3 is empty, and the second player wins the simplified game in
all these cases.

The second player wins in these scenarios:

• [1, 2, 3, 4, 4] and [3, 5, 5, 2, 1].

• [1, 3, 3, 2] and [1, 2].

The first player wins:

• [1, 2] and [1, 2, 3, 3].

• [1, 2, 3] and [3, 2, 4, 4, 1].

• [1, 2, 3] and [3, 4, 5, 5, 4, 2, 1].

5

Southeastern European Regional Programming Contest 2023
December 9, 2023

E. Eliminate Tree
Author: Pavle Martinović

Solved by: 55/84
First to solve: HunTR

First let’s assume that we don’t add any vertices, and are interested whether it is possible to eliminate
the tree using only operation of type 2. This is possible if and only if the tree has a perfect matching. One
direction of this claim is obvious, while the other follows from the fact that if a rooted tree has a perfect
matching, then the edge with the lowest depth will always connect a vertex with degree 1 and a vertex
with degree ≤ 2 (if the “lower“ vertex isn’t a leaf, then there has to be another edge in its subtree, and if
the “upper“ vertex has degree at least 3, then it has at least two children, and in some that isn’t matched
to has to have a deeper matched edge).

Let m be the size of the largest matching in the tree. We claim that the answer is 2n − 3m. First, it
is always possible with this many operations, by first taking n − 2m operations of type 1 to add a leaf
attached to every unmatched vertex, resulting in a tree with 2n − 2m vertices and a perfect matching,
which we can destroy with an additional n − m operations of type 2 by what we have already proved.
On the other hand, if we ignore all operations of type 2 we will get a tree with n + t vertices, which we
eliminate in n+t

2 operations. The operations of type 2 applied to this expanded tree have to be a matching
so the expanded tree has to have a perfect matching. However, one can notice that with every operation
of type 1 the maximal matching size increases by at most 1, so t ≥ n − 2m, and then the number of
required operations is at least t+ n+t

2 ≥ 2n− 3m.

It is possible to calculate m with a standard tree dp, allowing us to solve the problem in O(n).

6

Southeastern European Regional Programming Contest 2023
December 9, 2023

F. Fast XORting

Author: Pavle Martinović
Solved by: 35/54

First to solve: 3PeasInAPot

First we notice that operations of type 1 (swaps) and type 2 (XORs) commute, meaning that if we apply
two operations: swap i and i + 1 and then XOR by x, it will have the same result as first XORing by x
and then swapping i and i + 1. Then we can also notice that applying XOR x and then XOR y is the
same as applying XOR x XOR y, with one less operation. Using these two insights, we may assume that
all of the XORing operations happen at the beginning, and then we may assume that there is only one
XORing operation. After XORing, we have to swap using adjacent swaps, and it’s well known that the
number of operations needed for this is the number of inversions in the permutations.

Now, we notice that whether a[i] XOR x is greater or less than a[j] XOR x depends on only one bit. Indeed,
look at the first bit where a[i] and a[j] differ, if that bit is 0 in x then they remain in the same order as
a[i] and a[j], and if it is 1 their order swaps. This means that for any i and j whether a[i] and a[j] are in
an inversion or not depends only on a single bit i.e. all the bits are independent. This means that for each
value of 2k we may apply XOR 2k to the array and look whether the number of inversions has decreased
and if it has, add 2k to x which we will xor by in the beginning. In the end we just XOR everything by
x, find the number of inversions and add 1 if x isn’t 0 to get our answer. Since there are multiple ways to
count inversions in O(n log n), and we need to do so for each bit once, we get a solution in O(n log2 n).

Challenge: Solve the problem in O(n log n).

7

Southeastern European Regional Programming Contest 2023
December 9, 2023

G. Graph Race

Author: Roman Bilyi
Aleksa Milisavljević

Solved by: 13/36
First to solve: [UoNovi Sad] Infinity

Since there is an edge between vertices 1 and v it’s possible to go from vertex v to vertex 1 and then from
vertex 1 to vertex u. That means dist(v, u) ≤ dist(1, u)+1. Similarly, dist(1, u)− 1 ≤ dist(v, u). So there
are 3 possible cases:

• dist(v, u) = dist(1, u)− 1;

• dist(v, u) = dist(1, u);

• dist(v, u) = dist(1, u) + 1.

Let f(u, x) = au−bu · (dist(1, u)+x), we are interested only in values of f with −1 ≤ x ≤ 1. Since bu ≥ 0,
f(u,−1) ≥ f(u, 0) ≥ (f, 1). So if it’s possible to reach u using d(1, u) − 1 edges, we can still update the
answer using all values f(u,−1), f(u, 0) and f(u, 1).
We already know that it’s possible to reach any vertex using dist(1, u) + 1 edges. That means we can
initialize ansv = maxu6=v f(u, 1). After that, we need to update the answers with values f(u,−1) and
f(u, 0) when it’s possible to reach u using fewer edges.

To reach vertex u using dist(1, u) − 1 edges we can only use directed edges from x to y such that
dist(1, y) = dist(1, x) + 1. Let’s call all such edges forward. To reach vertex u using dist(1, u) edges we
can use exactly 1 edge (x, y) such that dist(1, x) = dist(1, y) and all other forward edges.

So we can create another directed graph with 2n vertices such that if we have forward edge x to y, we will
create 2 edges: from x to y and from x+n to y+n. If we have edge (x, y) such that dist(1, x) = dist(1, y),
we will create edges from x to y+n and from y to x+n. It’s easy to see that if it’s possible to reach vertex
u(u ≤ n) from vertex v in a new graph, then dist(v, u) = dist(1, u) − 1 and we can update ansv with
f(u,−1). And if it’s possible to reach vertex u(u > n) from vertex v, we can update ansv with f(u−n, 0).
Additionally, the new graph is a directed acyclic graph, so we can found all answers using dynamic
programming.

Complexity of such solution is O(n+m).

8

Southeastern European Regional Programming Contest 2023
December 9, 2023

H. High Towers

Author: Roman Bilyi
Denis Banu

Solved by: 0/13
First to solve: N/A

At first, let’s say that each tower can communicate with itself as well.

Let’s look at the first tower. It can communicate with some prefix of c towers and s more towers, such
that each of them if higher than all towers to the left of it. Let’s call those s towers an increasing stack
of towers. Also assume that c is the largest such value, so the first tower can’t communicate with tower
c+ 1 if it exists.

Each of the towers from second to c− 1-th cannot communicate with any other tower that the first can’t
communicate. So ai ≤ a1 for each 2 ≤ i ≤ c − 1. On the other hand, c-th tower can communicate with
all the towers that the first tower can and with tower c+ 1 as well, so ac > a1. That means we can find c
as the first value ac larger than a1. If such value doesn’t exist, a1 should be equal to n, and we can make
the first tower as the highest and solve the remaining problem.

Now tower c can communicate with the first c towers, s towers from increasing stack and also some range
of towers from c+ 1 to c+ r. We can find value of r as ac − c− s. There are 2 possible cases:

1. Tower c+ r + 1 is the one from increasing stack.

2. Tower c+ r + 1 is not the one from increasing stack, while hc+r = hc.

Let’s look at value ac+r. In the first case, tower c + r cannot communicate with any other towers either
than towers in range [c, c + r − 1] and towers in increasing stack. So ac+r ≤ r + s. In the second case,
tower c+ r can communicate with all towers in range [c, c+ r− 1], all s towers from increasing stack and
with tower c + r + 1. So ac+r ≥ r + s + 1. That means we can distinguish those 2 cases. Then we can
continue such process to find a non-decreasing stack of towers, split the problem into smaller subproblems
and solve each of them separately.

Complexity of the solution is O(n).

9

Southeastern European Regional Programming Contest 2023
December 9, 2023

I. Impossible Numbers

Author: Lucian Bicsi
Solved by: 0/5

First to solve: N/A

Obviously, a number x can be written iff there is a matching in the bipartite graph having vertices
corresponding to digits 0− 9 on the left side and one vertex for each cube on the right side, and adding
the edge (i, j) iff cube j has digit i. Also, vertices on the left side must have a capacity equal to the
number of occurrences of each digit in x.

Considering that, let’s invoke Hall Theorem. A number x can be written with the cubes iff for each
subset S of digits, the number of cubes having at least one of the digits from S is at least equal to the
total occurrences of digits in x belonging to S. Conversely, a number cannot be written iff there is some
"witness"set S for which the above does not hold.

Let’s take each set S (max 210) and first calculate the number of cubes, as described above. Then, we
will generate numbers that are a counter-example for S in increasing order using a simple backtracking
“branch and bound” algorithm (fix digit by digit, and keep the number of digits fixed from S). The answer
is the smallest k elements of the merge of these 210 infinite lists. In order to merge efficiently, we will keep
an answer list ans and we will simulate the merging with the list for each set S while backtracking (e.g.
using two pointers), and break when the merge result has k elements.

If coded carefully, the solution should have time complexity O((n+kd) ·2d) and memory complexity O(k),
where d = 10.

10

Southeastern European Regional Programming Contest 2023
December 9, 2023

J. Jackpot

Author: Anton Trygub
Solved by: 95/112

First to solve: CodeBusters

Let b1 ≤ b2 ≤ . . . ≤ b2n be these elements in the sorted order. It’s easy to see that the answer can’t be
larger than (bn+1 + bn+2 + . . .+ b2n)− (b1 + . . .+ bn). From the other side, we can achieve it.

Color elements b1, b2, . . . , bn yellow, and elements bn+1, . . . , b2n blue, then at any point in time there will
be two adjacent elements of different colors. Perform the operation with any such pair. For any such pair,
the difference between the blue and the yellow numbers will be added to your score.

Total runtime: O(n log n) for sorting (but can also be done in O(n), since we only need to find the median).

11

Southeastern European Regional Programming Contest 2023
December 9, 2023

K. K Subsequences

Author: Anton Trygub
Solved by: 61/87

First to solve: KhNURE_KIVI

Let f(a) = t. Then f of at least one subsequence has to be at least d tke. We can show that this is
achievable.

Let’s add elements to the sequences one by one; let pi be the current largest sum of the suffix of subsequence
i, and p be the current largest sum of a. When we add 1 to the i-th subsequence, pi → pi + 1, when we
add −1, we get pi → max(0, pi − 1).

Now, we can do a simple greedy algorithm: go over elements of a from left to right, if it’s 1, add it to the
subsequence with the smallest pi, if it’s −1, add it to the subsequence with the largest pi. Then all pis
always differ by at most 1, and we always have p1 + p2 + . . .+ pk ≤ p, so we never get pi > d tke.
Total runtime: O(n log k) (can also be done in O(n)).

12

Southeastern European Regional Programming Contest 2023
December 9, 2023

L. LIS on Grid
Author: Anton Trygub

Solved by: 0/8
First to solve: N/A

Let’s state the criteria, when we can make LIS at most k: when

m∑
i=1

max(0, ai − k) ≤ k · (n− k)

First, let’s show that it’s necessary. Let’s use the Dilworth’s theorem:

Dilworth’s Theorem. In any finite partially ordered set, the largest antichain has the same size as the
smallest chain decomposition.

For this problem, chains are increasing sequences of cells, and antichains are sequences of cells, such that
no pair of them is decreasing; they form nondecreasing sequences: sequences in which we can go only up or
to the right. Then, if the LIS is k, then we must be able to decompose all cells into k such nondecreasing
sequences.

For each nondecreasing sequence, count the number of times we go one cell up (and stay in the same
column). This can happen at most n − k times. From the other side, if ai > k, then this has to happen
at least ai − k times just for that column alone. Hence the inequality.

Now, let’s show that it’s achievable. First, we can assume that all ai ≥ k (we can replace ai smaller than
k with k, construct a solution, and then delete some cells). We will now build k nondecreasing sequences
of cells; the i-th sequence will start at cell (n− k+ i, 1). We will also keep bi = ai − k: we will make each
subsequence will have at least one cell in each column, so bi represents the "extra"amount of black cells
that we need.

We will build such sequences one by one. When we process sequence i, we will do the following:

1. Assume we are in column c. While bc > 0, and the cell above is not black, we go down, decrease bc
by 1, and add the current cell to the sequence.

2. Then, we go to the right and add the current cell to the sequence.

It’s easy to see that this construction works (the proof is left to the reader as an exercise).

Total runtime: O(nm).

13

Southeastern European Regional Programming Contest 2023
December 9, 2023

M. Max Minus Min
Author: Anton Trygub

Solved by: 59/83
First to solve: Infinity

Let’s fix the segment on which we add x. Denote the maximum and minimum values on this segment
as max1,min1, and outside of this segment as max2,min2. Then, we can get total max − min to be
min(max1 −min1,max2 −min2). So, we just need to minimize this value.

Note that if we can improve max−min, the chosen segment has to contain max or min. Now, let’s binary
search over max−min. Let’s check if we can make it ≤ x.
Assume the chosen segment contains max. Then, it shouldn’t contain any elements smaller than max−x.
Choose the maximal such segment. Then, it’s enough to check if max −min for remaining elements is
≤ x too. Afterwards, do the same check, assuming that the chosen segment contains min.

Total runtime: O(n logmaxA).

14

