
Uni

Cup

The 2nd Universal Cup
Stage 20: Ōokayama, Jan 27–28, 2024

Problem Tutorial: “Numerous Elimination”
We introduce two solutions: an O(N) time solution using dynamic programming and an O(logN) time
solution by cleverly transforming the formula.

O(N) Solution

Let dp[i] be the number of matches played when i players participate in the tournament. Clearly, dp[1] = 0.
Since the number of matches doesn’t change based on the order of matches, we consider adding one player
after i− 1 players have played matches.

Initially, after i− 1 players have played dp[i− 1] matches, there is one player in each column from column
0 to column i−2. We then add one player to column 0 and proceed to play i−1 matches sequentially from
column 0 to column i − 2. As a result, there will be i − 1 players in column 0 and one player in column
i − 1. Finally, after playing dp[i − 1] matches, every column will have one player, and the tournament
ends.

Therefore, when conducting a tournament with i players, 2× dp[i− 1] + i− 1 matches are played, and we
obtain the formula:

dp[i] = 2× dp[i− 1] + i− 1

By calculating the values of dp[i] for i = 2, . . . , N in order, we can solve this problem in O(N) time.

O(logN) Solution

By cleverly transforming the formula obtained earlier, we can find the answer more efficiently.

dp[n] = 2× dp[n− 1] + n− 1

= dp[1]× 2n−1 +

n∑
i=2

(i− 1)× 2n−i

=

n∑
i=2

n∑
j=i

2n−j

=
n∑

i=2

2n−i+1 − 1

= (2n − 2)− (n− 1)

= 2n − n− 1

Using exponentiation by squaring, we can calculate this in O(logN) time.

Problem Tutorial: “Almost Large”
Consider a graph with N vertices. If we can change Si to Sj in one operation, add an edge i→ j. We just
need to check whether it is possible to reach from 1 to N to answer the problem. However, since there are
O(N2) possible edges to consider, it is not suitable.

Imagine the operation as the following sequence:

• Choose a digit and set its value to 0.

• Then, repeat increasing any digit by one (if the digit’s value is less than 2).

Page 1 of 20



Uni

Cup

The 2nd Universal Cup
Stage 20: Ōokayama, Jan 27–28, 2024

• End the operation if it matches any Si.

Considering the above operation, you can create the following graph. LetM = 12 as the maximum number
of digits.

• Prepare 3M vertices a0, a1, . . . , a3M−1 and N vertices b1, . . . , bN .

• For i = 1, 2, . . . , N , add an edge from aSi to bi.

• For Si in ternary representation as n1n2 . . . nM , for j = 1, 2, . . . ,M , add an edge from bi to ax where
x = n1n2 . . . nj−10nj+1 . . . nM .

• For i = 0, 1, . . . , 3M − 1, if the ternary representation of i is n1n2 . . . nM , and for j = 1, 2, . . . ,M , if
nj < 2, add an edge from ai to ax where x = n1n2 . . . nj−1(nj + 1)nj+1 . . . nM .

By determining whether it is possible to reach from b1 to bN in this graph, you can solve the problem.
By using DFS, the time complexity is O(M(3M +N)), where it is suitable for this problem.

Problem Tutorial: “Yet Another Simple Math Problem”
For pairs of positive integers satisfying the conditions (a, b), we can prove that there is only one pair of
positive integers (x, y) satisfying x+ y2 = a and x2 + y = b.

To prove it, assume there are 2 positive integers (x1, y1) and (x2, y2) satisfiying x1 + y21 = x2 + y22 = a
and x21 + y1 = x22 + y2 = b, then obtain x1 = x2 and y1 = y2.

Consequently, the problem can be reformulated as follows: Find the number of pairs of positive integers
(x, y) satisfying 1 ≤ x+ y2, x2 + y ≤ N .

Once the problem is reduced, various methods can be employed to solve it.

Solution

Let k be the maximum non-negative integer satisfying k2 + k ≤ N . The answer is then given by
k2 + 2×max{0, N − (k + 1)2}. Therefore, finding k using binary search or other methods allows solving
the problem in O(logN) time per test case.

In the following, we provide the proof for this solution. When actually solving the problem, you can write
a straightforward code to output the answers and observe the results for N = 1, 2, 3, . . . to predict the
answer formula.

Proof

We define “condition” as 1 ≤ x+ y2, x2 + y ≤ N .

observation 1

All pairs of positive integers (x, y) satisfying 1 ≤ x, y ≤ k satisfy the condition, and there are a total of
k2 such pairs.

This follows from 1 ≤ x+ y2, x2 + y ≤ k2 + k ≤ N .

Page 2 of 20



Uni

Cup

The 2nd Universal Cup
Stage 20: Ōokayama, Jan 27–28, 2024

observation 2

Any pair of positive integers (x, y) satisfying x ≥ k + 2 or y ≥ k + 2 does not satisfy the conditions.

Without loss of generality, we can assume x ≥ y due to symmetry in the condition. In this case,

x− y ≤ (x− y)(x+ y)

= x2 − y2

implies x+ y2 ≤ x2 + y. Therefore,

x2 + y ≥ (k + 2)2

= (k + 1)2 + 2(k + 1) + 1

≥ (k + 1)2 + (k + 1)

> N.

We used the assumption, “k is the maximum non-negative integer satisfying k2 + k ≤ N ”, in the last
inequality. Since x2 + y > N , the pair (x, y) does not satisfy the condition.

observation 3

The number of pairs (x, y) satisfying x = k + 1 or y = k + 1 is 2×max{0, N − (k + 1)2}.
We would like to find the number of pairs of positive integers (x, y) satisfying the condition, where x = k+1
or y = k + 1.

Due to symmetry in the condition, without loss of generality, we can assume x ≥ y. Then we only need
to consider cases where x = k + 1 and y ≤ k + 1. In this case, x+ y2 ≤ x2 + y holds. Therefore, the only
crucial factor is whether x2 + y ≤ N .

Since x = k + 1,

y ≤ N − x2

= N − (k + 1)2.

As N < (k + 1)2 + (k + 1) based on the assumption about k, we have N − (k + 1)2 < k + 1. Thus, the
number of positive integers y satisfying the condition is max{0, N − (k + 1)2}.
Since we automatically determined x = k+1 > y, we don’t need to consider cases where x = y. Therefore,
the number of pairs (x, y) satisfying x = k + 1 or y = k + 1 is 2×max{0, N − (k + 1)2}.

Problem Tutorial: “Spacecraft”
Consider a spaceship, represented by a sphere with the center at the origin and radius R, denoted as B.
When considering the region enclosed by half-lines with endpoints Pi that are tangent to B, the shape of
this region forms a cone with Pi as its vertex.

Let λi be the result of translating this cone so that its vertex is at the origin O. Additionally, if we cut
the original cone, before translation, along the intersection with the surface of the sphere, and retain the
side that does not contain Pi, we obtain the region denoted as Λi. This region corresponds to the area
where the i-th star cannot be seen.

However, the figures are considered as sets of points in R3. Also, λi and Λi include their boundaries.

Page 3 of 20



Uni

Cup

The 2nd Universal Cup
Stage 20: Ōokayama, Jan 27–28, 2024

This problem seeks to determine the number of regions into which the space S, represented by a sphere
with a radius of 1 centered at the origin, is divided when excluding the union of all the translated cones,
i.e., S \

⋃
i λi.

To establish the validity of this reduction, we provide a proof.

Proof

Points in 3-dimensional space are identified with 3-dimensional vectors. If a point p is lovely, then for any
real number k greater than 1, the point kp is also lovely (i.e., moving in the direction away from the origin
is also considered lovely). Therefore, consider the direction p

|p| as seen from the origin, for any point p
excluding the origin. At this point, the following two conditions are equivalent for a direction d (|d| = 1).

• There exists a lovely point with direction d.

• d ∈ (S \
⋃

i λi).

The above condition can be rephrased as d /∈
⋃

i λi for all i, since |d| = 1. As λi is completely contained
in the region where the i-th star cannot be seen, the equivalence between the conditions above is evident.
The reverse implication is also satisfied because the “side” of λi and Λi is parallel, allowing the condition
d /∈ Λi to be met by choosing a sufficiently large real number F (d). Therefore, the reduction is valid.

Before confirming the validity of the reduction, we introduce some notation. We define points that are
not in

⋃
i λi on the sphere S as “lovely points” on the sphere S. The set of points that are lovely on the

sphere S is denoted as LS . Furthermore, two points p1 and p2 belonging to LS are considered to be in
the same connected component if there exists a curve on LS connecting p1 and p2, denoted as p1 ∼S p2.

Now, let’s confirm the validity of the reduction. It is sufficient to show that p1 ∼ p2 if and only if
p1/|p1| ∼S p2/|p2| for lovely points p1 and p2.

• First, we demonstrate p1 ∼ p2 → p1/|p1| ∼S p2/|p2|. Take a curve on L connecting p1 and p2, and
let f : L→ LS be defined as f(p) = p

|p| . Since f is clearly continuous, the curve becomes a curve on
LS , and immediately, p1/|p1| ∼S p2/|p2| follows.

• Next, we show p1 ∼ p2 ← p1/|p1| ∼S p2/|p2|. Take a curve on LS connecting p1/|p1| and p2/|p2|,
and let g : LS → L be defined as g(d) = F (d)d. Since g is also clearly continuous, the curve becomes
a finite-length curve on L, and immediately, p1 ∼ p2 follows.

Reduced Problem Analysis

The intersection of S and λi forms circles. The figure in the next page shows these circles and S in one of
the sample test cases.

Next, carefully observe the reduced problem. When several circles are drawn on the sphere, the problem
becomes how many regions are formed outside all these circles on the sphere. Here, pay attention to the
fact that these circles drawn on the sphere each lie on a plane, and rephrase the problem as follows.

Cut the sphere S with several planes and retain only the parts on the same side as the origin concerning
the planes. How many regions are formed?

Let σi be the plane that includes the circle that serves as the boundary between S and λi, and denote the
half-space on the same side as the origin with respect to σi as Hi. Consider the convex hull C defined as
the intersection of half-spaces H1, H2, ...,HN . Additionally, add half-spaces as necessary to ensure that C
is finite. If we can determine how many regions S ∩ C ′ is divided into, where C ′ is the part of C whose
distance from the origin is greater than 1, then we obtain the answer to the original problem.

Page 4 of 20



Uni

Cup

The 2nd Universal Cup
Stage 20: Ōokayama, Jan 27–28, 2024

Рис. 1: The intersection of S and λi forms a circle, which lies on a plane.

Since the points on C that maximally distance from the origin are only its vertices, to ensure that two
different vertices are in the same region, it is necessary and sufficient for the region to be reachable by
traversing along the edges of C ′ on the sphere. From these considerations, the following algorithm is
derived:

• Compute the planes σi for i = 1, 2, ..., N , and calculate the convex hull C as the intersection of the
half-spaces defined by σi.

• Add half-spaces as necessary to ensure that C is finite, including S entirely if needed.

• Determine the number of connected components in the graph formed by points and edges

Several algorithms are known for computing the convex hull as the intersection of half-spaces. For example,
by examining all planes in N iterations and calculating the intersection of half-planes on those planes using
angular sorting, it is possible to compute the half-plane intersection in O(N logN) time. Consequently,
the overall time complexity for computing the convex hull is O(N2 logN) per case. Since the number
of edges and vertices is O(N), determining the number of connected components does not become the
bottleneck in the algorithm. This part can be efficiently handled using data structures such as UnionFind.

Problem Tutorial: “R-Connected Components”

Solution

We can find the correct value of the answer with restricting the range of vertices from Z2 to about
2
√
R × 2

√
R. While the solution results in TLE, comparing the prime factorization results of an integer

R with it, we can expect the answer is as follows.

• If any a prime number of form 4n+ 3 occurs an odd number of times in the prime factorization of
R, the answer is inf.

• Otherwise, the answer is obtained by removing all prime nubmers of form 4n + 1 from the prime
factorization of R.

Page 5 of 20



Uni

Cup

The 2nd Universal Cup
Stage 20: Ōokayama, Jan 27–28, 2024

In fact, this is correct. By factorizing R in O(
√
R) time, this problem can be solved.

Let’s proceed with proving this.

Proof

Introducing the imaginary unit i, we can factorize x2 + y2 = (x+ yi)(x− yi). This problem seems to be
related to factorization over Gaussian integers.

Denote the Gaussian integer ring as Z[i] and consider the vertix set as Z[i].

Define W (R) := {w ∈ Z[i] | ww = R}, where w denotes the complex conjugate of w. W (R) represents
the relative positions of vertices that can be directly connected by edges.

When we label the elements of W (R) as W (R) = {w1, w2, . . . , wk}, then a vertex x being connected to
the vertex 0 is equivalent to the existence of a sequence of non-negative integer n1, n2, . . . , nk such that
x =

(∑k
i=1 niwi

)
.

Here, since w ∈ W (R) =⇒ iw,−w,−iw ∈ W (R) holds, it is acceptable to relax the sequence of
non-negative integers n1, n2, . . . , nk to Gaussian integers.

Now, considering the properties of the Gaussian integer ring:

• Primes of the form 4n+ 3 are Gaussian primes.

• Uniqueness of prime factorization.

• For a, b ∈ Z[i], there exists g ∈ Z[i] such that na+mb | n,m ∈ Z[i] = ng | n ∈ Z[i]. In particular, g
is the greatest common divisor of a and b.

We acknowledge these properties. For more details, please refer to Gaussian integers - Wikipedia1

When a prime q of form 4n+3 occurs an odd number of times in the prime factorization
of R

Assume that there exists w ∈ Z[i] such that ww = R. For any x ∈ Z[i], w is a multiple of x if and only
if w is a multiple of x. Therefore, when factoring w and w, the prime factor q should appear the same
number of times, and the prime factorization of R should have q occurring an even number of times.
This contradicts the assumption that q occurs an odd number of times in the prime factorization of R,
so W (R) = ∅, and the answer is inf.

From now on, it is assumed that R contains an even number of each 4n + 3 type prime in its prime
factorization.

Preparing

From now on, assume that R contains an even number of each prime of form 4n + 3 in its prime
factorization.

We define the following notations.

• For w ∈ Z[i] and A ⊂ Z[i], wA := {aw | a ∈ A}

• For A,B ⊂ Z[i], A+B := {a+ b | a ∈ A, b ∈ B}

• For A,B ⊂ Z[i], A×B := {ab | a ∈ A, b ∈ B}
1https://en.wikipedia.org/wiki/Gaussian_integer

Page 6 of 20



Uni

Cup

The 2nd Universal Cup
Stage 20: Ōokayama, Jan 27–28, 2024

• When we label the elements of W (R) as W (R) = w1, w2, . . . , wk, let
S(R) =

{∑k
i=1 niwi

∣∣∣ n1, n2, . . . , nk ∈ Z[i]
}

= w1Z[i] + w2Z[i] + · · · + wkZ[i] be the set of
vertices connected to vertex 0.

If the following shown, we can complete the proof by mathematical induction.

• S(1) = Z[i]

• S(2) = (1 + i)Z[i]

• For a prime p of form 4n+ 1, S(p) = Z[i]

• For a prime q of form 4n+ 3, S(q2) = qZ[i]

• S is multiplicative: (S(A) = aZ[i] ∧ S(B) = bZ[i]) =⇒ S(AB) = abZ[i]

We will show these in the following.

When R = 1, 2

As demonstrated in the samples, S(1) = Z[i] and S(2) = (1 + i)Z[i].

When R = p, where p is a prime of form 4n+ 1

It is known that primes of form 4n+ 1 can be expressed (uniquely) as the sum of two squares.

Therefore, there exists w ∈ Z[i] such that ww = R. Here, w is a Gaussian prime. (If w can be factored,
then w can also be factored, thus R can be factored. This contradicts.)

By the properties acknowledged above, S(R) = wZ[i] + wZ[i] = gcd(w,w)Z[i]. Since w,w are distinct
primes (if they were the same, R would be even), gcd(w,w) = 1 (considering multiplying by identity
elements as equivalent), and S(R) = Z[i].

When R = q2, where q is a prime of form 4n+ 3

When factorizing q2 over Gaussian integers, it cannot be further factored beyond q × q. Due to the
uniqueness of prime factorization over Gaussian integers, for ww = R, the only possibilities for w ∈ Z[i]
are w = q, iq,−q,−iq. Therefore, S(R) = qZ[i].

S is multiplicative: (S(A) = aZ[i] ∧ S(B) = bZ[i]) =⇒ S(AB) = abZ[i]

By the uniqueness of prime factorization over Gaussian integers, W (AB) = W (A)×W (B) holds.

If we label W (A) = {a1, a2, . . . }, W (B) = {b1, b2, . . . },

S(AB) = a1b1Z[i] + a1b2Z[i] + · · ·+ a2b1Z[i] + a2b2Z[i] + · · ·
= a1(b1Z[i] + b2Z[i] + · · · ) + a2(b1Z[i] + b2Z[i] + · · · ) + · · ·
= a1bZ[i] + a2bZ[i] + · · ·
= b(a1Z[i] + a2Z[i] + · · · )
= abZ[i].

We proved the answer for this problem.

Problem Tutorial: “N^a (log N)^b”

Page 7 of 20



Uni

Cup

The 2nd Universal Cup
Stage 20: Ōokayama, Jan 27–28, 2024

Observation

The condition that the limit lim
N→∞

F (N)

Na(logN)b
converges to a finite value is similar to Landau’s big O

notation. In other words, the pair (a, b) intuitively represents “the rate of divergence to infinity.”

For N, logN, log(logN), the following holds for any positive real number c > 0:

lim
N→∞

(logN)c

N
= 0

lim
N→∞

(log(logN))c

logN
= 0

While the proof are not easy, using these equations allows us to prove the following solution.

Solution

The states that should be considered as F (N) can be expressed as tuples (a, b, ε), where a and b are
non-negative integers, and ε is either 0 or 1. Intuitively, ε represents “the rate of divergence not reaching
log(N) but diverging to infinity as N →∞.” The solution to the problem is (a, b) if ε = 0, and (a, b+ 1)
if ε = 1.

We define the order of states lexicographically: (a1, b1, ε1) ≥ (a2, b2, ε2) if and only if a1 > a2 or (a1 = a2
and b1 > b2) or (a1 = a2 and b1 = b2 and ε1 ≥ ε2).

1. Firstly, for a positive integer m, the state of Nm is (m, 0, 0).

2. Let the states of F1(N) and F2(N) be (a1, b1, ε1) and (a2, b2, ε2), respectively. The states of the sum
and product of F1 and F2 are as follows:

• The state of F1(N)× F2(N) is (a1 + a2, b1 + b2, ε1 OR ε2).

• The state of F1(N) + F2(N) is max{(a1, b1, ε1), (a2, b2, ε2)}.

3. Let the state of F (N) be (a, b, ε), then for a positive integer m, the state of (log(F (N)))m is as
follows:

• If a > 0, then (0,m, 0).

• If a = 0, then (0, 0, 1).

Therefore, by recursively parsing the string while performing these operations, we can solve this problem.
Note that the values of a and b may not fit within a 32-bit integer type according to the constraints of
the problem (they will fit within a 64-bit integer type instead).

Problem Tutorial: “Cola”

Bob’s optimal strategy

The information known about Bob’s P always follows the pattern described below:

There exists a unique integer 1 ≤ a ≤ N such that:

• For i < a, the value of Pi is known.

Page 8 of 20



Uni

Cup

The 2nd Universal Cup
Stage 20: Ōokayama, Jan 27–28, 2024

• For i = a, there are some values that Pi cannot be.

• For a < i ≤ N , no information is known about Pi.

Therefore, Bob’s optimal strategy utilizes the mentioned a in the following way:

• For i < a, set Qi = Pi.

• For i = a, choose one possible value x for Pi and set Qi = x.

• For a < i ≤ N , arbitrarily determine Qi.

The probability that the minimum i that becomes a in this strategy is b (where 0 ≤ b < N − a) is 1
N+1−a

and is independent of a.

We define the polynomial f(x) as follows.

• [xa]f(x) is the probability that Bob receives cola on the (a+ 1)-th question.

The following equation then holds.

f(x) =
N∏
i=1

1

i

i−1∑
j=0

xj

 =
1

N !

N∏
i=1

1− xi

1− x
=

1

N !

1

(1− x)N

N∏
i=1

(1− xi)

Computing by using formal power series

Now, we proceed with formal power series.

Using
M−1∑
i=0

[xi]f(x) = [xM−1]

(
f(x)

1− x

)
, it is sufficient to calculate [xi]

(
1

(1−x)N+1

)
and [xi]

N∏
j=1

(1− xj) for

any 0 ≤ i < M .

[xi]
(

1
(1−x)N+1

)
=
(
N+i
N

)
, so with preprocessing in O(N +M), it can be computed in O(1).

Now, let’s find
N∏
j=1

(1− xj).

For 0 ≤ i ≤M ≤ N , the following holds:

[xi]
N∏
j=1

(1− xj) = [xi]
∞∏
j=1

(1− xj)

Therefore, by using Euler’s Pentagonal Number Theorem, O(
√
M) preprocessing can calculate

[xi]

N∏
j=1

(1− xj) in O(1).

Problem Tutorial: “404 Chotto Found”
Let S be the Suffix Array and LCP Array of the concatenated strings S1, S2, . . . SN using ’#’ (any
character smaller than lowercase English letters in lexicographical order) as a separator.

Next, for each string, consider removing the common substrings found in multiple strings from the set of
all substrings.

Page 9 of 20



Uni

Cup

The 2nd Universal Cup
Stage 20: Ōokayama, Jan 27–28, 2024

If a suffix is derived from Si, and L is the maximum value of LCP for all suffixes except those derived
from Si, then to avoid common substrings with different strings, the end position should be chosen such
that the length of the substring is greater than or equal to L+ 1.

To account for duplicate substrings within the same string, in case of the same substring, we count the
later occurrence on the Suffix Array. Let R be the LCP with the next occurrence of the same substring-
derived suffix on the SA. To avoid common substrings, the end position should be chosen such that the
length of the substring is greater than or equal to R+ 1.

The count of substrings corresponding to a particular suffix is given by (length of the suffix) - max(R,L).

For each suffix corresponding to S1, S2, . . . , SN , sum up the counts calculated above.

Let M =
∑N

i=1 |Si|, then with appropriate precomputation, L and R can be computed in O(M) time.

The construction of Suffix Array and LCP Array can also be done in O(M) time.

Problem Tutorial: “T Tile Placement Counting”
Firstly, H and W both being multiples of 4 is a necessary and sufficient condition for the existence of
a tiling method (hereinafter referred to as “tiling”). Throughout the explanation, let H and W both be
multiples of 4.

It is important to note that all the proofs for facts related to tiling used in this explanation are provided
in the following two papers. Here, we acknowledge these facts and focus on the properties of tiling and
specific calculation methods.

• D.W. Walkup, Covering a rectangle with T-tetrominoes, Amer. Math. Monthly 72 (1965) 986-988 2

• M. Korn and I. Pak, Tilings of rectangles with T-tetrominoes, Theor. Comp. Sci. 319 (2004), 3-27 3

– Especially Sections 3. Tiling rectangles with T-tetrominoes and 4. Chain graphs

Properties of Tiling

Рис. 2: Tiling example for H = W = 8.

In fact, the tiles do not have the following positional relationship.

Furthermore, the tiles, fitting together concavities and convexities, form columns, and these columns
further create cycles. The tiles can be observed to form several cycles.

2https://www.jstor.org/stable/2313337
3https://doi.org/10.1016/j.tcs.2004.02.023

Page 10 of 20



Uni

Cup

The 2nd Universal Cup
Stage 20: Ōokayama, Jan 27–28, 2024

Рис. 3: Non-existent positional relationship between tiles.

Рис. 4: Tiling cycles.

Now, let’s consider the bottom right corner (the blue point in the figure) of a square with odd-row and
odd-column indices, denoted as (i, j), where i and j are both odd.

The four squares around the blue point consist of three squares covered by the same tile, and the remaining
one square covered by a different tile. Similarly, the four squares covered by the tile include three squares
that are part of the four squares around another blue point, and the remaining one square is part of
the four squares around a different blue point. Therefore, for a blue point u, let t be the tile that covers
exactly one of the four squares around u, and let v be the blue point around whose four squares t covers
three squares. We then consider a directed edge u→ v. The blue point v is uniquely determined for any
blue point u. Moreover, the directed graph created in this way consists of vertices with in-degrees and
out-degrees equal to 1, forming a set of directed cycles. We call this graph the chain graph of tiling. For
any tiling, such a graph can be considered, and it is evident that the mapping from tiling to the chain
graph is injective.

Properties of the Chain Graph

Let’s summarize the characteristics of the chain graph. Firstly, all edges have a length of 2 squares.
Furthermore, the graph consists of a set of cycles, and focusing on each cycle, the following conditions are
satisfied:

• A change in direction towards the same direction can occur only when traversing an odd number of
edges.

• A change in direction towards a different direction can occur only when traversing an even number
of edges.

Graphs with these properties are all associated with tilings. Now, by selecting one cycle in the chain

Page 11 of 20



Uni

Cup

The 2nd Universal Cup
Stage 20: Ōokayama, Jan 27–28, 2024

graph and reversing its direction, we still get a chain graph. Therefore, for a chain graph with c cycles,
it is sufficient to count the weighted number of chain graphs with a fixed orientation, where each cycle is
assigned a weight of 2c.

Up to this point, the problem of counting tilings has been reduced to the problem of counting chain
graphs. By fixing the orientation of the edges and counting the number of ways to choose some edges
on the next graph to make the in-degrees and out-degrees of all vertices equal to 1, the solution can be
obtained. (This orientation reflects the constraints of direction changes.)

Рис. 5: Directed edges on a graph.

Note that the scale has been reduced from considering a grid of H ×W squares to considering a grid of
H/2×W/2 vertices.

In this graph, certain edges (depicted in red) are inevitably chosen due to the degree conditions, and for
the remaining edges, choices are determined as follows:

• Independently choose either the left and right 2 edges or the upper and lower 2 edges of the marked
sections.

For example, the tiling given earlier corresponds to choosing the upper and lower edges for marks 1 and
3, and the left and right edges for marks 2 and 4.

Counting

Dynamic programming is effective for counting such graphs. Consider selecting the marks from left to right
and choosing edges one by one. Since the weight doubles each time a cycle is formed, it is necessary to keep
track of how many cycles are formed. After selecting each column’s mark, manage which point belongs

to the same cycle, and the number of states can be expressed using Catalan numbers Cn =
(2n)!

n!(n+ 1)!
as

CH/4. The figures include the corresponding bracket sequences for each state. Let C denote the number
of states.

The transition of this dynamic programming does not depend on the indices (as the processing differs
based on column parity, combining transitions for two columns), and it can be represented in a form
suitable for matrix exponentiation. Therefore, for a fixed H, the sequence of answers has at most a C-
degree linear recurrence. Considering this property, a solution that works faster than the Θ(C3 logW )
matrix exponentiation-based approach can be used.

Firstly, calculate the first 2C terms by matrix multiplication in Θ(C3) time. Then, use the Berlekamp–
Massey algorithm to reconstruct the linear recurrence in O(C2) time and obtain the final answer using

Page 12 of 20



Uni

Cup

The 2nd Universal Cup
Stage 20: Ōokayama, Jan 27–28, 2024

Рис. 6: Graphs used in counting.

the Bostan-Mori algorithm in O(C logC logW ) time. Note that embedding the two polynomials used in
the Bostan-Mori algorithm for H = 4, 8, . . . , 28 in advance can further reduce the execution time.

Problem Tutorial: “Set Construction”
Whether a given set satisfies the conditions can be determined with a time complexity of O(M2 logM).
Creating such a function allows us to verify whether the constructed set truly satisfies the conditions, and
helps minimize unnecessary penalties.

However, note that submitting a solution that executes the O(M2 logM) verification function might result
in TLE.

Solution

Let’s denote any set that satisfies the conditions for N,M as f(N,M). This problem can be solved by
using recursion to repeatedly reduce it to smaller cases, like several other construction problems.

When M ≤ N(N − 1)/2

We can reduce it to the problem of finding f(N − 1,M).

Let A = f(N − 1,M), and define

B = {2a+ (a%2) | a ∈ A}.

The set B satisfies the conditions, where a%2 denotes the remainder when a is divided by 2.

When N ≥ 3 and M is even

We can reduce it to the problem of finding f(N − 1,M/2).

Let A = f(N − 1,M/2) and B = {1}. By like taking the Cartesian product of the sets, define

C = {2a+ b | a ∈ A, b ∈ B}.

The set C satisfies the conditions. The problem is reduced to finding f(N − 1,M/2).

To satisfy M/2 ≤ (N − 1)N/2, since M ≤ N(N + 1)/2, we need N ≥ 3.

Page 13 of 20



Uni

Cup

The 2nd Universal Cup
Stage 20: Ōokayama, Jan 27–28, 2024

When N ≥ 6 and M is odd

We can reduce it to the problem of finding f(N − 1,M − 1) and then finding f(N − 2, M−12 ).

Let A = f(N − 1,M − 1). Define

C = {2a+ 1 | a ∈ A, b ∈ B} ∪ {0}

, and the set C satisfies the conditions. The problem is reduced to finding f(N − 2, M−12 ).

To satisfy (M − 1)/2 ≤ (N − 2)(N − 1)/2, we need N ≥ 6.

When N is small

The missing case is N ≤ 5.

The most challenging case is f(5, 15). We can apply brute-force search to construct this case. Without
brute-force search, we can construct as follows:

Focus on 15 = 3× 5. Let A = f(2, 3), B = f(3, 5). By like taking the Cartesian product of the sets, define

C = {8a+ b | a ∈ A, b ∈ B}.

The set C satisfies the conditions.

Story

This problem is related to finite topological spaces, and this problem is equivalent to “Find a topological
space on 0, 1, · · · , N − 1 with M elements in its open set system.”

Furthermore, it is possible to solve the decision problem in O(N2M/w) time (w being the word size).

Problem Tutorial: “Dense Planting”
For any graph G, we can obtain the number of spanning trees in G by computing any first minor of the
Laplacian matrix G by Kirchhoff’s Theorem.

So let us consider about this graph.

Рис. 7: a graph that have (ab− e2)(cd− f2)− ad spanning trees.

the (5, 5)-minor of the Laplacian matrix of this graph is

Page 14 of 20



Uni

Cup

The 2nd Universal Cup
Stage 20: Ōokayama, Jan 27–28, 2024


a −e 0 0
−e b −1 0
0 −1 c −f
0 0 −f d


, so the number of spanning trees is (ab−e2)(cd−f2)−ad . and the number of edges is a+b+c+d−e−f−1 .

Now all we need to do is to find a, b, c, d, e, f satisfy

• K + ad = (ab− e2)(cd− f2)

• a ≥ e ≥ 0

• b ≥ e+ 1

• d ≥ f ≥ 0

• c ≥ f + 1

• a+ b+ c+ d− e− f ≤ 1001

.

You can find e, f that meet conditions by searching a, b, c, d = K
1
4 ± 40.

Also, by precalculating pairs of y, z that satisfy xy − z2 = P for x ' K
1
4 , P ' K

1
2 , you can quickly find

b, c, e, f that satisfy the condition by searching for divisors P of K + ad fora, d ' K
1
4

Problem Tutorial: “Next TTPC 3”
The name of the programming contest, denoted as Tx, repeats in a period of lcm(|S1|, |S2|, |S3|, |S4|).
Denote C as the occurrences of Tx being TTPC in one period, and x as the ((N − 1) mod C) + 1-th
occurrence of Tx being TTPC. We can solve this problem by finding C and x. Therefore, we can assume
N ≤ C.

As a naive solution, enumerating Tx for one period is a possible method. However, in the constraints, it
will be lcm(|S1|, |S2|, |S3|, |S4|) ≤ 1012, so this solution is not suitable.

We imagine creating TT with strings S1 and S2, creating PC with strings S3 and S4, and combining these
two to form TTPC. LetM1 = lcm(|S1|, |S2|) andM2 = lcm(|S3|, |S4|). Then, we can consider the periods of
the first two characters and the last two characters of Tx areM1 andM2, respectively. SinceM1,M2 ≤ 106,
we can enumerate the positions where S1 and S2 form the desired string in one period for both.

Let k1 < M1 be a non-negative integer such that on the (k1 + 1)-th year the first two characters are TT,
and let k2 < M2 be a non-negative integer such that on the (k2 +1)-th year the last two characters are PC.
The non-negative integer x where the first two characters are TT can be expressed as tM1 + k1 + 1 using
a non-negative integer t. Additionally, to have the last two characters become PC, we need tM1 + k1 ≡ k2
(mod M2).

Here, for a fixed t, the number of pairs of k1, k2 satisfying the condition is given by

tM1 ≡ −k1 + k2 (mod M2).

This represents the number of occurrences of TTPC in N = tM1, tM1 + 1, . . . , tM1 +M1 − 1.

We can determine the number of pairs (k1, k2) satisfying −k1 + k2 ≡ i (mod M2) for i = 0, 1, . . . ,M2 − 1
in a computational complexity of O(M2 log(M2)). This can be achieved through convolution using Fast
Fourier Transform (FFT).

By iterating t from 0, you can search for the value of t where the count of TTPC occurrences is N or more.
After that, you can perform a brute-force search over tM1, tM1 + 1, . . . , tM1 + M1 − 1 to find the N -th
occurrence of TTPC.

Page 15 of 20



Uni

Cup

The 2nd Universal Cup
Stage 20: Ōokayama, Jan 27–28, 2024

The time complexity is O(M1 +M2 log(M2)).

Problem Tutorial: “Sum is Integer”

Decimal part of cumulative sum

Consider the cumulative sum si =

i∑
j=1

pi
qi

for i = 0, 1, . . . , N , where s0 = 0. This leads to the following

problem:

Count the number of pairs of integers (l, r) satisfying 0 ≤ l < r ≤ N such that sr − sl is an
integer.

The condition that the difference of two real numbers is an integer is equivalent to their decimal parts
being equal. However, note that the decimal part of a real number x is defined as x− bxc.
Using this, we can solve the problem:

Classify given real numbers based on their decimal parts.

Hashing using modulo

Let’s use hashing. Since the values involved are rational numbers, we consider managing the decimal part
using modM . Here, M is a very large positive integer.

Calculating si modulo M is easy, but it contains information about not only the decimal part but also
the integer part. Therefore, we perform calculations with floating-point numbers for the integer part and
obtain the decimal part of si modulo M by subtracting its integer part.

The following points need consideration:

• How large should M be chosen to ensure that the decimal parts are likely to be equal modulo M
due to the equality of the decimal parts modulo M?

• Can the integer part of the cumulative sum be accurately calculated with floating-point numbers?

Let’s consider the former. IfM is randomly chosen, the decimal parts will be distributed randomly modulo
modM . For all pairs of the N + 1 cumulative sums, if the decimal parts are different, then their decimal
parts modulo modM must also be different. Therefore, by choosing M to be of the order of 1018, we
can estimate that it is sufficient to ensure a high probability of correctness. Thus, preparing two random
prime numbers of the order of 109 as M will suffice for hashing the pairs of cumulative sums.

Bonus: If the M that the solution uses is known, you can create cases where the solution fails.

Now, consider the latter. Calculating the integer part of the cumulative sum with floating-point numbers
may introduce errors and cause issues. However, by adding an appropriate constant c to the cumulative
sum in advance, all integer parts of the cumulative sum can be accurately calculated with floating-point
numbers. If errors seem to affect the calculation of the integer part when computing the cumulative sum,
set c to avoid the issue. Although the value of cumulative sum modulo M may seem to change, it changes
by the same amount, so there is no problem.

Bonus: The decimal part of the cumulative sum can be made as small as 10−40000.

By managing the hash with an associative array, the problem can be solved in approximately O(N logN)
time complexity.

Problem Tutorial: “Bracket Sequestion”

Page 16 of 20



Uni

Cup

The 2nd Universal Cup
Stage 20: Ōokayama, Jan 27–28, 2024

Counting Parentheses Sequences

The existence of a valid string is equivalent to replacing the ‘?‘ with ‘(‘ and ‘)‘ such that the number of
occurrences of each is the same, resulting in a valid parentheses sequence.

(?()(??)??
( () ))

((()(())))

Now, let’s consider the inverse operation. For a parentheses sequence, we perform one of the following
operations in order on the 1, 2, . . . , 2N characters:

• Operation1 Replace ‘(‘ with ‘?‘

• Operation2 Replace ‘)‘ with ‘?‘

• Operation3 Do nothing

However, if Operation 2 is performed, Operation 1 cannot be executed.

The goal is to find the sum of the number of ways to replace characters for all parentheses sequences.

Let C(x) be the generating function for Catalan numbers.

The number of ways to replace without performing Operation 1 for all strings is 2N ([xN ]C(x)).

If Operation 1 is performed last, and considering the number of occurrences of ‘(‘ before the last ‘)‘ in
the original parentheses sequence is greater by j (1 ≤ j ≤ N), the number of ways for the parentheses
sequence and replacement is 2N+j−1([xN−j ]C2j+1(x)).

Here’s an explanation of why this formula holds:

Let k be the number of ‘)‘ encountered before the last Operation 1. Up to the last Operation 1, the
number of ‘(‘ encountered is j + k, and the number of subsequent ‘)‘ is N − k.
The total N + k characters can be replaced with ‘?‘, and since one character is already determined to be
replaced with ‘?‘, there are 2N+j−1 ways to perform replacements.

For the term C2j+1(x), it accounts for the fact that before the last Operation 1, there are j − 1 more ‘(‘
than ‘)‘ to the left, and after that, there are j more ‘)‘ than ‘(‘ to the right.

The sequence is P-recursive

The sequence of Catalan numbers is P-recursive. Surprisingly, the sequence of answers is also P-recursive.
Let’s demonstrate this below.

Let ai be the answer when N = i (a0 = 1), bi = ai
2i
, cn = [xn]C(x), and f(x) =

∑
bix

i. According to the
previous analysis, the following relation holds:

f = C +
C3x

1− 2xC2

By using xC2 = C − 1 or C = 1−
√
1−4x
2x in this equation, we obtain:

(9x− 2)f = C(6x− 1)− 1

By focusing on the terms xn and xn+1 on both sides of this equation and further using
(4n+ 2)cn = (n+ 2)cn+1, we get:

Page 17 of 20



Uni

Cup

The 2nd Universal Cup
Stage 20: Ōokayama, Jan 27–28, 2024

(9bn − 2bn+1)

(
4n+ 2

n+ 2

)(
6− 4n+ 6

n+ 3

)
= (9bn+1 − 2bn+2)

(
6− 4n+ 6

n+ 3

)
Expanding this equation and modifying it according to the formula for an, we obtain:

an(72n2 + 468n+ 216) + an+1(−17n2 − 124n− 159) + an+2(n
2 + 8n+ 15) = 0

Therefore, it has been demonstrated that the sequence (a0, a1, . . . ) is P-recursive.

The algorithm for computing the N -th term of a P-recursive sequence in O(
√
N logN) time is well

known.

Problem Tutorial: “2D Parentheses”
Consider a graph consisting of N vertices corresponding to the N open parentheses and N vertices
corresponding to the N closing parentheses. Add an edge between the i-th open parenthesis and the j-th
closing parenthesis if x1,i < x2,j and y1,i < y2,j .

To arrange N rectangles on the plane, it is necessary for this graph to have a perfect matching. If a perfect
matching does not exist, the answer is No.

The possibility of arranging N rectangles on the plane in a way that satisfies the condition (hereinafter
referred to as the condition) that the common area of any two different rectangles is either 0 or one is
completely contained within the other depends on constructing a perfect matching.

The following greedy algorithm constructs a maximum matching, and if this algorithm constructs a perfect
matching, it is the unique perfect matching that satisfies the condition.

• Sort the closing parentheses in ascending order of x, and if x coordinates are the same, sort them
in ascending order of y.

• Match each open parenthesis with the closing parenthesis that can be matched. If there are multiple
candidates, choose the one with the maximum y coordinate, and if the y coordinates are also the
same, choose the one with the maximum x coordinate.

Proof of being the unique perfect matching

Assume there exists another perfect matching M2 that can arrange N rectangles on the plane satisfying
the condition, in addition to the perfect matching M1 constructed by the above algorithm.

Then, there exists an open parenthesis i that satisfies the following condition:

• Let j1 be the closing parenthesis matched with i in matchingM1, and let j2 be the closing parenthesis
matched with i in matching M2.

• Then, j1 6= j2, and either x2,j1 ≤ x2,j2 or y2,j1 ≤ y2,j2 .

In that case, the open parenthesis matched with the closing parenthesis j1 is outside the rectangle formed
by i and j2. This contradicts the fact thatM2 arranges N rectangles on the plane satisfying the condition.

Therefore, it has been proven that the perfect matching constructed by the above algorithm is the unique
perfect matching that can arrange N rectangles on the plane satisfying the condition.

Page 18 of 20



Uni

Cup

The 2nd Universal Cup
Stage 20: Ōokayama, Jan 27–28, 2024

Solution

First, construct the maximum matching using the greedy algorithm and check if it is a perfect matching.
If it is a perfect matching, check if it satisfies the condition. If it does, output Yes. If it doesn’t, output
No. The overall complexity is O(N logN) since the greedy algorithm can be implemented using std::set,
and the condition check can be done using std::set or std::multiset or with a segment tree.

Problem Tutorial: “Bridge Elimination”
The score is defined as the "product of the sums of integers written on the vertices for each connected
component of G."In other words, it is the "sum of the product of integers written on selected vertices
from each connected component of G, considering all possible selections."

Therefore, if we denote p(i) as "The total product sum of values for all cases of selecting i elements from
A1, A2, . . . , AN ,"and q(i) as "The number of simple connected undirected graphs with i selected vertices,
such that the number of connected components inG is i, and the chosen i vertices are in different connected
components in G,"then the solution to the problem is given by:

N∑
i=1

p(i)× q(i)

Calculation of p(i)

p(i) = [xi]
N∏
j=1

(1 +Ajx)

This allows us to calculate p(i) using methods such as O(N2) or O(N(logN)2).

Calculation of q(i)

Each connected component obtained by removing bridges from a simple connected undirected graph forms
a biconnected component, which, due to the properties of biconnected components, results in a tree when
aggregated into a single vertex.

Now, let’s consider the following problem:

For M simple connected undirected graphs with labeled vertices, each without bridges, what
is the number of graphs obtained by adding M − 1 edges to make them connected?

The answer to this problem, when the number of vertices in the i-th graph without bridges is denoted as
Bi, and N is the total number of vertices (N =

∑M
i=1Bi), is given by:

(
M∏
i=1

Bi

)
NM−2

This result can be derived using the Prüfer code.

Let Bi be the number of vertices in the i-th group, and r(i) be the number of simple connected undirected
graphs with i vertices and no bridges. Define dp[i][j] as the "sum of

∏j
k=1Bkr(Bk) for all possible ways

Page 19 of 20



Uni

Cup

The 2nd Universal Cup
Stage 20: Ōokayama, Jan 27–28, 2024

of partitioning i vertices into non-empty j groups, each forming a simple connected undirected graph
without bridges, and the selected j vertices are in different groups in G."Then, q(i) is given by:

q(i) = dp[N ][i]×N i−2

This dynamic programming approach has the following transitions:

dp[0][0] = 1

dp[i][j] =

i−j+1∑
k=1

(
i− j
k − 1

)
× dp[i− k][j − 1]× k × r(k)

This dynamic programming solution has a state space of O(N2) and transitions in O(N), resulting in an
overall complexity of O(N3).

Furthermore, r(i) is obtained by subtracting the number of graphs with more than one connected
component in G from the total number of graphs with i vertices. Let dp2[i][j] be the sum of

∏j
k=1Bkr(Bk)

for all possible ways of partitioning i vertices i vertices into non-empty j groups, each forming a simple
connected undirected graph without bridges."Then, dp2 has the following transitions:

dp2[0][0] = 1

dp2[i][j] =
i∑

k=1

(
i− 1

k − 1

)
× dp2[i− k][j − 1]× k × r(k)

Thus, r(i) can be expressed as:

r(i) = s(i)−
i∑

j=2

dp2[i][j]× ij−2

Using dp2 with O(N3) complexity, r(i) can be computed. Finally, s(i) can be obtained using the inclusion-
exclusion principle. With these calculations, q(i) can be determined in O(N3).

Summary

By calculating p(i) in O(N2) and q(i) in O(N3), the overall solution can be achieved in O(N3).

Page 20 of 20


