
A B C D E F G H I J K L End

Petrozavodsk Programming Camp Contest 6

olmrgcsi and his friends

August 30, 2023

Petrozavodsk Programming Camp Contest 6 1 / 22



A B C D E F G H I J K L End

A: Abstract

• Let ci =
∑

(i ,j)∈E 2cj if i has at least one outgoing edge. Otherwise, ci = 1.

• Let S =
∑

aici .

• Observe that after each second, S become ⌊S2 ⌋. And, the process get stopped
when S = 0.

• Hence, the answer is 1 + ⌊log2 S⌋.
• Note that S can be a O(n)-bit integer, so you might need to implement big

integers.

• The total time complexity is O(nm+n2

k ) where k depends on the implementation
of big integers.

Petrozavodsk Programming Camp Contest 6 2 / 22



A B C D E F G H I J K L End

B: Bocchi the Rock

TODO

Petrozavodsk Programming Camp Contest 6 3 / 22



A B C D E F G H I J K L End

C: Computer Network

• If there are two consecutive +s before a /, you should move them after the / to
minimize the number of operations.

• Enumerate the number of times / is used.

• Each ai , bi corresponds to some inequalities once you write the whole thing down.

• See if the inequalities share a solution, it is also easy to find out the number of +s
needed to fulfill the inequalities.

Petrozavodsk Programming Camp Contest 6 4 / 22



A B C D E F G H I J K L End

C: Computer Network

• If there are two consecutive +s before a /, you should move them after the / to
minimize the number of operations.

• Enumerate the number of times / is used.

• Each ai , bi corresponds to some inequalities once you write the whole thing down.

• See if the inequalities share a solution, it is also easy to find out the number of +s
needed to fulfill the inequalities.

Petrozavodsk Programming Camp Contest 6 4 / 22



A B C D E F G H I J K L End

C: Computer Network

• If there are two consecutive +s before a /, you should move them after the / to
minimize the number of operations.

• Enumerate the number of times / is used.

• Each ai , bi corresponds to some inequalities once you write the whole thing down.

• See if the inequalities share a solution, it is also easy to find out the number of +s
needed to fulfill the inequalities.

Petrozavodsk Programming Camp Contest 6 4 / 22



A B C D E F G H I J K L End

C: Computer Network

• If there are two consecutive +s before a /, you should move them after the / to
minimize the number of operations.

• Enumerate the number of times / is used.

• Each ai , bi corresponds to some inequalities once you write the whole thing down.

• See if the inequalities share a solution, it is also easy to find out the number of +s
needed to fulfill the inequalities.

Petrozavodsk Programming Camp Contest 6 4 / 22



A B C D E F G H I J K L End

D: Digit DP

• Easiest way to fit the initial large array into a data structure is to use persistent
segment tree.

• For all m < n, if we have two copies of the persistent segment tree formed by
a1, ...am, we can add am+1 to all values in one of them and merge the two
persistent segment trees to one. This way, we get the persistent segment tree
formed by a1, ...am+1.

• Range queries can be handled the same way it is usually done in ordinary segment
trees. Total complexity is O(nq).

Petrozavodsk Programming Camp Contest 6 5 / 22



A B C D E F G H I J K L End

D: Digit DP

• Easiest way to fit the initial large array into a data structure is to use persistent
segment tree.

• For all m < n, if we have two copies of the persistent segment tree formed by
a1, ...am, we can add am+1 to all values in one of them and merge the two
persistent segment trees to one. This way, we get the persistent segment tree
formed by a1, ...am+1.

• Range queries can be handled the same way it is usually done in ordinary segment
trees. Total complexity is O(nq).

Petrozavodsk Programming Camp Contest 6 5 / 22



A B C D E F G H I J K L End

D: Digit DP

• Easiest way to fit the initial large array into a data structure is to use persistent
segment tree.

• For all m < n, if we have two copies of the persistent segment tree formed by
a1, ...am, we can add am+1 to all values in one of them and merge the two
persistent segment trees to one. This way, we get the persistent segment tree
formed by a1, ...am+1.

• Range queries can be handled the same way it is usually done in ordinary segment
trees. Total complexity is O(nq).

Petrozavodsk Programming Camp Contest 6 5 / 22



A B C D E F G H I J K L End

E: Except One

• Let’s consider calculating all elementary symmetric polynomials for 1, 2, · · · , p − 1

• Let q be a primitive root of p.

• For a term x of degree m < p− 1, since {1, 2, · · · , p− 1} = {q, 2q, · · · , (p− 1)q},
we should have x = xqm modulo p, but that means x = 0 (qm − 1 ̸= 0 mod p)

• By comparing the coefficients, we have f (p, k, t)− kf (p, k , t − 1) = 0 ,so the
answer is (−k)t mod p

Petrozavodsk Programming Camp Contest 6 6 / 22



A B C D E F G H I J K L End

E: Except One

• Let’s consider calculating all elementary symmetric polynomials for 1, 2, · · · , p − 1

• Let q be a primitive root of p.

• For a term x of degree m < p− 1, since {1, 2, · · · , p− 1} = {q, 2q, · · · , (p− 1)q},
we should have x = xqm modulo p, but that means x = 0 (qm − 1 ̸= 0 mod p)

• By comparing the coefficients, we have f (p, k, t)− kf (p, k , t − 1) = 0 ,so the
answer is (−k)t mod p

Petrozavodsk Programming Camp Contest 6 6 / 22



A B C D E F G H I J K L End

E: Except One

• Let’s consider calculating all elementary symmetric polynomials for 1, 2, · · · , p − 1

• Let q be a primitive root of p.

• For a term x of degree m < p− 1, since {1, 2, · · · , p− 1} = {q, 2q, · · · , (p− 1)q},
we should have x = xqm modulo p, but that means x = 0 (qm − 1 ̸= 0 mod p)

• By comparing the coefficients, we have f (p, k, t)− kf (p, k , t − 1) = 0 ,so the
answer is (−k)t mod p

Petrozavodsk Programming Camp Contest 6 6 / 22



A B C D E F G H I J K L End

E: Except One

• Let’s consider calculating all elementary symmetric polynomials for 1, 2, · · · , p − 1

• Let q be a primitive root of p.

• For a term x of degree m < p− 1, since {1, 2, · · · , p− 1} = {q, 2q, · · · , (p− 1)q},
we should have x = xqm modulo p, but that means x = 0 (qm − 1 ̸= 0 mod p)

• By comparing the coefficients, we have f (p, k, t)− kf (p, k , t − 1) = 0 ,so the
answer is (−k)t mod p

Petrozavodsk Programming Camp Contest 6 6 / 22



A B C D E F G H I J K L End

F: Fun on Tree

• Given a rooted tree with (possibly negative) weights on both vertices and edges.
For each update, we will add vi to yi ’s subtree vertices. After each update, you
need to output argmaxj(dxi ,j − aj) and maxj(dxi ,j − aj). Here dxi ,j means the
distance between xi and j .

• A classic problem. Many possible solutions exist. (e.g. TopTree, Centroid
Decomposition, etc.)

• We will describe an algorithm that only requires Heavy-Light Decomposition and
Segment Tree. This algorithm runs in O(N logN + Q log2N) with O(N) space
used.

Petrozavodsk Programming Camp Contest 6 7 / 22



A B C D E F G H I J K L End

F: Fun on Tree

• Given a rooted tree with (possibly negative) weights on both vertices and edges.
For each update, we will add vi to yi ’s subtree vertices. After each update, you
need to output argmaxj(dxi ,j − aj) and maxj(dxi ,j − aj). Here dxi ,j means the
distance between xi and j .

• A classic problem. Many possible solutions exist. (e.g. TopTree, Centroid
Decomposition, etc.)

• We will describe an algorithm that only requires Heavy-Light Decomposition and
Segment Tree. This algorithm runs in O(N logN + Q log2N) with O(N) space
used.

Petrozavodsk Programming Camp Contest 6 7 / 22



A B C D E F G H I J K L End

F: Fun on Tree

• Given a rooted tree with (possibly negative) weights on both vertices and edges.
For each update, we will add vi to yi ’s subtree vertices. After each update, you
need to output argmaxj(dxi ,j − aj) and maxj(dxi ,j − aj). Here dxi ,j means the
distance between xi and j .

• A classic problem. Many possible solutions exist. (e.g. TopTree, Centroid
Decomposition, etc.)

• We will describe an algorithm that only requires Heavy-Light Decomposition and
Segment Tree. This algorithm runs in O(N logN + Q log2N) with O(N) space
used.

Petrozavodsk Programming Camp Contest 6 7 / 22



A B C D E F G H I J K L End

F: Fun on Tree

• Consider all possible LCA of xi and j . It is clear that it must be either xi or xi ’s
ancestor.

• Case 1: The LCA is xi (i.e. j is in xi ’s subtree). Then, the answer is
min(d1,j − aj)− d1,xi . Therefore, we can maintain a Segement Tree with d1,j − aj
inside. For each update and query, you simply do range-update and range-query
on the given subtree range.

• Case 2: The LCA is xi ’s ancestor. Then, the answer is
min(d1,j − aj)− 2d1,gxi ,j − d1,xi . Here, gxi ,j is the LCA of xi and j . We also know
that j must be in one of the subtrees of gxi ,j except the one xi is in.

Petrozavodsk Programming Camp Contest 6 8 / 22



A B C D E F G H I J K L End

F: Fun on Tree

• Consider all possible LCA of xi and j . It is clear that it must be either xi or xi ’s
ancestor.

• Case 1: The LCA is xi (i.e. j is in xi ’s subtree). Then, the answer is
min(d1,j − aj)− d1,xi . Therefore, we can maintain a Segement Tree with d1,j − aj
inside. For each update and query, you simply do range-update and range-query
on the given subtree range.

• Case 2: The LCA is xi ’s ancestor. Then, the answer is
min(d1,j − aj)− 2d1,gxi ,j − d1,xi . Here, gxi ,j is the LCA of xi and j . We also know
that j must be in one of the subtrees of gxi ,j except the one xi is in.

Petrozavodsk Programming Camp Contest 6 8 / 22



A B C D E F G H I J K L End

F: Fun on Tree

• Consider all possible LCA of xi and j . It is clear that it must be either xi or xi ’s
ancestor.

• Case 1: The LCA is xi (i.e. j is in xi ’s subtree). Then, the answer is
min(d1,j − aj)− d1,xi . Therefore, we can maintain a Segement Tree with d1,j − aj
inside. For each update and query, you simply do range-update and range-query
on the given subtree range.

• Case 2: The LCA is xi ’s ancestor. Then, the answer is
min(d1,j − aj)− 2d1,gxi ,j − d1,xi . Here, gxi ,j is the LCA of xi and j . We also know
that j must be in one of the subtrees of gxi ,j except the one xi is in.

Petrozavodsk Programming Camp Contest 6 8 / 22



A B C D E F G H I J K L End

F: Fun on Tree

• The answer of case 2 can be found in O(log2N).

• Conduct HLD on the tree. For each node u, we store min(d1,j − aj)− 2d1,u on it
and build a Segment Tree for these chains. Here, j is in one of the subtrees of u
except the one the heavy child of u is in.

• For each query, climb the tree from xi to 1.

• If the edge is a heavy edge, the value we stored previously is the answer we want.
Therefore, we can ask the Segment Tree to get the answer.

• If the edge is a light edge connecting po and o, we can use the Segment Tree in case
1 to answer the query.

• Update to the Segment Tree in case 2 can also be done in a similar way. Since we
only need to care about light edges for each update, we can reuse the Segment
Tree in case 1 to update light edges.

Petrozavodsk Programming Camp Contest 6 9 / 22



A B C D E F G H I J K L End

F: Fun on Tree

• The answer of case 2 can be found in O(log2N).

• Conduct HLD on the tree. For each node u, we store min(d1,j − aj)− 2d1,u on it
and build a Segment Tree for these chains. Here, j is in one of the subtrees of u
except the one the heavy child of u is in.

• For each query, climb the tree from xi to 1.

• If the edge is a heavy edge, the value we stored previously is the answer we want.
Therefore, we can ask the Segment Tree to get the answer.

• If the edge is a light edge connecting po and o, we can use the Segment Tree in case
1 to answer the query.

• Update to the Segment Tree in case 2 can also be done in a similar way. Since we
only need to care about light edges for each update, we can reuse the Segment
Tree in case 1 to update light edges.

Petrozavodsk Programming Camp Contest 6 9 / 22



A B C D E F G H I J K L End

F: Fun on Tree

• The answer of case 2 can be found in O(log2N).

• Conduct HLD on the tree. For each node u, we store min(d1,j − aj)− 2d1,u on it
and build a Segment Tree for these chains. Here, j is in one of the subtrees of u
except the one the heavy child of u is in.

• For each query, climb the tree from xi to 1.

• If the edge is a heavy edge, the value we stored previously is the answer we want.
Therefore, we can ask the Segment Tree to get the answer.

• If the edge is a light edge connecting po and o, we can use the Segment Tree in case
1 to answer the query.

• Update to the Segment Tree in case 2 can also be done in a similar way. Since we
only need to care about light edges for each update, we can reuse the Segment
Tree in case 1 to update light edges.

Petrozavodsk Programming Camp Contest 6 9 / 22



A B C D E F G H I J K L End

F: Fun on Tree

• The answer of case 2 can be found in O(log2N).

• Conduct HLD on the tree. For each node u, we store min(d1,j − aj)− 2d1,u on it
and build a Segment Tree for these chains. Here, j is in one of the subtrees of u
except the one the heavy child of u is in.

• For each query, climb the tree from xi to 1.
• If the edge is a heavy edge, the value we stored previously is the answer we want.

Therefore, we can ask the Segment Tree to get the answer.

• If the edge is a light edge connecting po and o, we can use the Segment Tree in case
1 to answer the query.

• Update to the Segment Tree in case 2 can also be done in a similar way. Since we
only need to care about light edges for each update, we can reuse the Segment
Tree in case 1 to update light edges.

Petrozavodsk Programming Camp Contest 6 9 / 22



A B C D E F G H I J K L End

F: Fun on Tree

• The answer of case 2 can be found in O(log2N).

• Conduct HLD on the tree. For each node u, we store min(d1,j − aj)− 2d1,u on it
and build a Segment Tree for these chains. Here, j is in one of the subtrees of u
except the one the heavy child of u is in.

• For each query, climb the tree from xi to 1.
• If the edge is a heavy edge, the value we stored previously is the answer we want.

Therefore, we can ask the Segment Tree to get the answer.
• If the edge is a light edge connecting po and o, we can use the Segment Tree in case

1 to answer the query.

• Update to the Segment Tree in case 2 can also be done in a similar way. Since we
only need to care about light edges for each update, we can reuse the Segment
Tree in case 1 to update light edges.

Petrozavodsk Programming Camp Contest 6 9 / 22



A B C D E F G H I J K L End

F: Fun on Tree

• The answer of case 2 can be found in O(log2N).

• Conduct HLD on the tree. For each node u, we store min(d1,j − aj)− 2d1,u on it
and build a Segment Tree for these chains. Here, j is in one of the subtrees of u
except the one the heavy child of u is in.

• For each query, climb the tree from xi to 1.
• If the edge is a heavy edge, the value we stored previously is the answer we want.

Therefore, we can ask the Segment Tree to get the answer.
• If the edge is a light edge connecting po and o, we can use the Segment Tree in case

1 to answer the query.

• Update to the Segment Tree in case 2 can also be done in a similar way. Since we
only need to care about light edges for each update, we can reuse the Segment
Tree in case 1 to update light edges.

Petrozavodsk Programming Camp Contest 6 9 / 22



A B C D E F G H I J K L End

G: Game

TODO

Petrozavodsk Programming Camp Contest 6 10 / 22



A B C D E F G H I J K L End

H: Harumachi Kaze

• From now on we only assume the largest case, n ≤ 16384 and k ≤ 32767

• Because of the conditions on the ks in the queries, we can construct a1, · · · , a8
and b1, · · · , b8 such that for all ks in the query, we can find i , j such that
ai + bj + k = 32767.

• For i from 1 to 8, we construct a segment tree of size 32768 for the array A, but
with ai zeros filled in the beginning. For B, we do the same. So we have 16
segment trees, and have to modify on 8 of them in every modification.

• For a query, if we have ai + bj + k = 32767, then only operate on the two
segment trees in this query (the ith version of A and the jth version of B).

• Now it’s equivalent to having k = 32767 = 2t − 1, so we know exactly one of A′,
B ′ uses a prefix of length 2t−1. We can determine which one to take in one
compare query. Then we have k = 2t−1 − 1 and goes one level deeper in both the
segment trees. Since the size of all nodes in the segment trees is some power of 2,
we can continue this procedure and answer the query in O(log n) queries.

Petrozavodsk Programming Camp Contest 6 11 / 22



A B C D E F G H I J K L End

H: Harumachi Kaze

• From now on we only assume the largest case, n ≤ 16384 and k ≤ 32767
• Because of the conditions on the ks in the queries, we can construct a1, · · · , a8

and b1, · · · , b8 such that for all ks in the query, we can find i , j such that
ai + bj + k = 32767.

• For i from 1 to 8, we construct a segment tree of size 32768 for the array A, but
with ai zeros filled in the beginning. For B, we do the same. So we have 16
segment trees, and have to modify on 8 of them in every modification.

• For a query, if we have ai + bj + k = 32767, then only operate on the two
segment trees in this query (the ith version of A and the jth version of B).

• Now it’s equivalent to having k = 32767 = 2t − 1, so we know exactly one of A′,
B ′ uses a prefix of length 2t−1. We can determine which one to take in one
compare query. Then we have k = 2t−1 − 1 and goes one level deeper in both the
segment trees. Since the size of all nodes in the segment trees is some power of 2,
we can continue this procedure and answer the query in O(log n) queries.

Petrozavodsk Programming Camp Contest 6 11 / 22



A B C D E F G H I J K L End

H: Harumachi Kaze

• From now on we only assume the largest case, n ≤ 16384 and k ≤ 32767
• Because of the conditions on the ks in the queries, we can construct a1, · · · , a8

and b1, · · · , b8 such that for all ks in the query, we can find i , j such that
ai + bj + k = 32767.

• For i from 1 to 8, we construct a segment tree of size 32768 for the array A, but
with ai zeros filled in the beginning. For B, we do the same. So we have 16
segment trees, and have to modify on 8 of them in every modification.

• For a query, if we have ai + bj + k = 32767, then only operate on the two
segment trees in this query (the ith version of A and the jth version of B).

• Now it’s equivalent to having k = 32767 = 2t − 1, so we know exactly one of A′,
B ′ uses a prefix of length 2t−1. We can determine which one to take in one
compare query. Then we have k = 2t−1 − 1 and goes one level deeper in both the
segment trees. Since the size of all nodes in the segment trees is some power of 2,
we can continue this procedure and answer the query in O(log n) queries.

Petrozavodsk Programming Camp Contest 6 11 / 22



A B C D E F G H I J K L End

H: Harumachi Kaze

• From now on we only assume the largest case, n ≤ 16384 and k ≤ 32767
• Because of the conditions on the ks in the queries, we can construct a1, · · · , a8

and b1, · · · , b8 such that for all ks in the query, we can find i , j such that
ai + bj + k = 32767.

• For i from 1 to 8, we construct a segment tree of size 32768 for the array A, but
with ai zeros filled in the beginning. For B, we do the same. So we have 16
segment trees, and have to modify on 8 of them in every modification.

• For a query, if we have ai + bj + k = 32767, then only operate on the two
segment trees in this query (the ith version of A and the jth version of B).

• Now it’s equivalent to having k = 32767 = 2t − 1, so we know exactly one of A′,
B ′ uses a prefix of length 2t−1. We can determine which one to take in one
compare query. Then we have k = 2t−1 − 1 and goes one level deeper in both the
segment trees. Since the size of all nodes in the segment trees is some power of 2,
we can continue this procedure and answer the query in O(log n) queries.

Petrozavodsk Programming Camp Contest 6 11 / 22



A B C D E F G H I J K L End

H: Harumachi Kaze

• From now on we only assume the largest case, n ≤ 16384 and k ≤ 32767
• Because of the conditions on the ks in the queries, we can construct a1, · · · , a8

and b1, · · · , b8 such that for all ks in the query, we can find i , j such that
ai + bj + k = 32767.

• For i from 1 to 8, we construct a segment tree of size 32768 for the array A, but
with ai zeros filled in the beginning. For B, we do the same. So we have 16
segment trees, and have to modify on 8 of them in every modification.

• For a query, if we have ai + bj + k = 32767, then only operate on the two
segment trees in this query (the ith version of A and the jth version of B).

• Now it’s equivalent to having k = 32767 = 2t − 1, so we know exactly one of A′,
B ′ uses a prefix of length 2t−1. We can determine which one to take in one
compare query. Then we have k = 2t−1 − 1 and goes one level deeper in both the
segment trees. Since the size of all nodes in the segment trees is some power of 2,
we can continue this procedure and answer the query in O(log n) queries.

Petrozavodsk Programming Camp Contest 6 11 / 22



A B C D E F G H I J K L End

H: Harumachi Kaze

• To summerize, we use 16 segment trees, each needs to call add n− 1 times in the
preprocessing. For every modification, we use add 8 log(n) times.
And for every query, we have log(n) levels to process and each costs 2 add queries
and 1 cmp query. So the total number of queries is
8n log(n) + 5000× 8 log(n) + 15000× 3 log(n)

• This is the end of my clown fiesta solution.
From the participants’ solutions, we learned that it is actually possible to do
binary search on two segment trees in O(log n) queries, where the form of the
segment trees can be arbitrary, and the conditions on k are also not needed,
rendering my algorithm useless. The key to that is to also do case analysis
(whether the current k is too big or too small). This algorithm also supports
binary searching on more than two trees. To my current understanding, the only
advantage of my algorithm is it uses half the number of cmp queries, but is still
worthless since we have to do much more preprocessing in order to make it work.

Petrozavodsk Programming Camp Contest 6 12 / 22



A B C D E F G H I J K L End

H: Harumachi Kaze

• To summerize, we use 16 segment trees, each needs to call add n− 1 times in the
preprocessing. For every modification, we use add 8 log(n) times.
And for every query, we have log(n) levels to process and each costs 2 add queries
and 1 cmp query. So the total number of queries is
8n log(n) + 5000× 8 log(n) + 15000× 3 log(n)

• This is the end of my clown fiesta solution.
From the participants’ solutions, we learned that it is actually possible to do
binary search on two segment trees in O(log n) queries, where the form of the
segment trees can be arbitrary, and the conditions on k are also not needed,
rendering my algorithm useless. The key to that is to also do case analysis
(whether the current k is too big or too small). This algorithm also supports
binary searching on more than two trees. To my current understanding, the only
advantage of my algorithm is it uses half the number of cmp queries, but is still
worthless since we have to do much more preprocessing in order to make it work.

Petrozavodsk Programming Camp Contest 6 12 / 22



A B C D E F G H I J K L End

I: Interval Addition

• Consider the difference array. bi = ai − ai−1 for 1 ≤ i ≤ n + 1, assuming
a0 = an+1 = 0

• Applying range addition to [l , r ] is equal to freely moving the value of bl and br+1

while preserving their sum.

• If we draw an edge between all such ls and r + 1s, we can see that the sequence
of operation can result in an all 0 sequence if and only if the sum of elements in
every connected component is 0. If there are k of them, there is a way of using
only n − k operations.

• We can have the following bitmask dp for maximizing the number of components,
dp[i ] = max(dp[j ]) + [sum of elements in i is 0], where j is a submask of i .
In fact, only js that differ from i in one bit need to be considered, so the total
complexity is O(n2n).

Petrozavodsk Programming Camp Contest 6 13 / 22



A B C D E F G H I J K L End

I: Interval Addition

• Consider the difference array. bi = ai − ai−1 for 1 ≤ i ≤ n + 1, assuming
a0 = an+1 = 0

• Applying range addition to [l , r ] is equal to freely moving the value of bl and br+1

while preserving their sum.

• If we draw an edge between all such ls and r + 1s, we can see that the sequence
of operation can result in an all 0 sequence if and only if the sum of elements in
every connected component is 0. If there are k of them, there is a way of using
only n − k operations.

• We can have the following bitmask dp for maximizing the number of components,
dp[i ] = max(dp[j ]) + [sum of elements in i is 0], where j is a submask of i .
In fact, only js that differ from i in one bit need to be considered, so the total
complexity is O(n2n).

Petrozavodsk Programming Camp Contest 6 13 / 22



A B C D E F G H I J K L End

I: Interval Addition

• Consider the difference array. bi = ai − ai−1 for 1 ≤ i ≤ n + 1, assuming
a0 = an+1 = 0

• Applying range addition to [l , r ] is equal to freely moving the value of bl and br+1

while preserving their sum.

• If we draw an edge between all such ls and r + 1s, we can see that the sequence
of operation can result in an all 0 sequence if and only if the sum of elements in
every connected component is 0. If there are k of them, there is a way of using
only n − k operations.

• We can have the following bitmask dp for maximizing the number of components,
dp[i ] = max(dp[j ]) + [sum of elements in i is 0], where j is a submask of i .
In fact, only js that differ from i in one bit need to be considered, so the total
complexity is O(n2n).

Petrozavodsk Programming Camp Contest 6 13 / 22



A B C D E F G H I J K L End

I: Interval Addition

• Consider the difference array. bi = ai − ai−1 for 1 ≤ i ≤ n + 1, assuming
a0 = an+1 = 0

• Applying range addition to [l , r ] is equal to freely moving the value of bl and br+1

while preserving their sum.

• If we draw an edge between all such ls and r + 1s, we can see that the sequence
of operation can result in an all 0 sequence if and only if the sum of elements in
every connected component is 0. If there are k of them, there is a way of using
only n − k operations.

• We can have the following bitmask dp for maximizing the number of components,
dp[i ] = max(dp[j ]) + [sum of elements in i is 0], where j is a submask of i .
In fact, only js that differ from i in one bit need to be considered, so the total
complexity is O(n2n).

Petrozavodsk Programming Camp Contest 6 13 / 22



A B C D E F G H I J K L End

J: Joining Cats

• First observation is that we can always fix the position of one cat and let the
other cats merge to it.

• So if we enumerate which of the cats it is, we can get a slow dp solution.
Let dp[i ][j ] be the maximum number of the rightward cats we can merge to the
center if we’ve used the first i gust of winds and have merged j leftward cats to
the center. Total transitions cost O(n2), so total complexity is O(n3)

• If we view the problem in reverse order, we can have a similar dp but don’t need
to enumerate the cat in the center (just check if for some j , dp[i ][j ] + j ≥ n − 1),
so we get a O(n2) solution.

Petrozavodsk Programming Camp Contest 6 14 / 22



A B C D E F G H I J K L End

J: Joining Cats

• First observation is that we can always fix the position of one cat and let the
other cats merge to it.

• So if we enumerate which of the cats it is, we can get a slow dp solution.
Let dp[i ][j ] be the maximum number of the rightward cats we can merge to the
center if we’ve used the first i gust of winds and have merged j leftward cats to
the center. Total transitions cost O(n2), so total complexity is O(n3)

• If we view the problem in reverse order, we can have a similar dp but don’t need
to enumerate the cat in the center (just check if for some j , dp[i ][j ] + j ≥ n − 1),
so we get a O(n2) solution.

Petrozavodsk Programming Camp Contest 6 14 / 22



A B C D E F G H I J K L End

J: Joining Cats

• First observation is that we can always fix the position of one cat and let the
other cats merge to it.

• So if we enumerate which of the cats it is, we can get a slow dp solution.
Let dp[i ][j ] be the maximum number of the rightward cats we can merge to the
center if we’ve used the first i gust of winds and have merged j leftward cats to
the center. Total transitions cost O(n2), so total complexity is O(n3)

• If we view the problem in reverse order, we can have a similar dp but don’t need
to enumerate the cat in the center (just check if for some j , dp[i ][j ] + j ≥ n − 1),
so we get a O(n2) solution.

Petrozavodsk Programming Camp Contest 6 14 / 22



A B C D E F G H I J K L End

K: Keychain

• N different circles’ center are given as p1, . . . , pN on 2D plane. Their radius are all
r . Determine the minimum value of r such that we can draw a generalized circle
Γ intersects with all N circle.

• The key idea is, if the center of the circle Γ is fixed to a certain point O, then
optimal radius of Γ is 1

2(max(d(pi ,O)) + min(d(pi ,O))), and the corresponding
minimized r would be 1

2(max(d(pi ,O))−min(d(pi ,O)))

• So we need to find a point O such that the difference between the distance from
O to the farthest and nearest point among pi is minimized.

Petrozavodsk Programming Camp Contest 6 15 / 22



A B C D E F G H I J K L End

K: Keychain

• Let’s first enumerate all O(n2) pairs of point as the farthest and nearest, say pfar
and pnear .

• The region
{O|d(pnear ,O) ≤ d(pi ,O)∀i}

can be described as the half-plane-intersection of n − 1 bisectors. The farthest
point case is similar.

• So, the region such that pfar is the farthest point and pnear is the nearest point is
convex (but maybe unbounded). Let’s call it C .

Petrozavodsk Programming Camp Contest 6 16 / 22



A B C D E F G H I J K L End

K: Keychain

• Claim: The minimum difference

min
O∈C

{d(O, pfar )− d(O, pnear )}

appears at vertices, or the limit to infinity through unbounded edge (infimium).
• Rough idea:

• For a fixed D, the graph of d(O, pfar )− d(O, pnear ) = D is a branch of hyperbola.
When D = 0 it’s the bisector of pfar and pnear .

• C completely lies in one side of the bisector (the side that is closer to pnear ).
• Imagine we increase D until the hyperbola touches C . Then either it exactly touches

some vertices, or the asymptote is parallel to the unbounded edge.

• Unbounded case corresponds to the line case, and we can solve it by building
convex hull and using rotating calipers algorithm.

Petrozavodsk Programming Camp Contest 6 17 / 22



A B C D E F G H I J K L End

K: Keychain

• Actually the vertices of C of each pair of pfar and pnear is the intersection of
Voronoi Diagram and Farthest Point Voronoi Diagram.

• Each diagram is a partition of 2D plane. We can use Euler’s planar graph formula
to prove that they both have linear number of edges (about 6n × 2, though).

• We can enumerate pairs of cells in VD and FPVD, and for each vertex of their
intersection, calculate the difference in O(1).

• Each cell is described by some half-planes, so if we take O(A+ B) time to
calculate the intersection of a cell with A edges and a cell with B edges, then the
time complexity would be O(n2) in total. This can be done by preprocessing
sorted half-planes and merge them in linear time when doing
half-plane-intersection instead of sort them directly.

Petrozavodsk Programming Camp Contest 6 18 / 22



A B C D E F G H I J K L End

K: Keychain — Building Diagram

• Both diagram can be calculated with half-plane-intersection in O(n2 log n).

• Here’s the problem: can we get the two diagram in o(n2 log n)?

• 3D convex hull in O(n2) might work.

• Nearest Point Voronoi Diagram in O(n log n) is a well known geometry template.

• Sketch of building Farthest Point Voronoi Diagram in O(n2): notice that only the
points on the convex hull are useful in Farthest Point Voronoi Diagram. So it can
be done by O(n) times half-plane-intersection of O(n) edges without sorting (the
angle-sorted bisectors list can be obtained easily when we have the
counterclockwise sorted convex hull list).

• Actually there is a linear time randomized incremental algorithm to do the
farthest one [1].

Petrozavodsk Programming Camp Contest 6 19 / 22



A B C D E F G H I J K L End

K: Keychain — Implementation Details

• Be careful of degenerated case. n = 1, all points colinear, e.t.c.

• Common half-plane-intersection S&I implementation requires a boundary to
ensure that it won’t be unbounded. The unbounded case is done by rotating
caliper, but we still need to decide the size of boundary so that all intersections
are considered. The maximum coordinate of the intersection of two bisectors can
reach Θ(C 2) where C = 105 in this problem. So we might need a 1010 boundary
and one should implement it carefully to avoid overflow (or just use floating
numbers instead?).

Petrozavodsk Programming Camp Contest 6 20 / 22



A B C D E F G H I J K L End

L: Lines

Fi (t) = it + max
0≤x ,y ,z≤n
x+y+z=i

(ax + by + cz)

max
0≤i≤3n

Fi (t) = max
0≤i≤3n

max
0≤x ,y ,z≤n
x+y+z=i

(ax + by + cz + tx + ty + tz)

max
0≤i≤3n

Fi (t) = max
0≤x ,y ,z≤n

(ax + by + cz + tx + ty + tz)

max
0≤i≤3n

Fi (t) = max
0≤x≤n

(ax + tx) + max
0≤y≤n

(by + ty) + max
0≤z≤n

(cz + tz)

So the graph of max
0≤i≤3n

Fi (t) changes slope whenever the convex hull of A, B, C

changes slope. We can construct the answer easily then by seeing the graph as the
sum of the convex hulls.

Petrozavodsk Programming Camp Contest 6 21 / 22



A B C D E F G H I J K L End

References

[1] L. P Chew.
Building voronoi diagrams for convex polygons in linear expected time.
Technical report, USA, 1990.

Petrozavodsk Programming Camp Contest 6 22 / 22


	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	End

